Navigation

  • index
  • next |
  • DifferentialForms 1.1.0 documentation »

FriCAS :: DifferentialForms¶

Contents:

  • 1 Theory
    • 1.0 Introduction
    • 1.1 Definitions
      • 1.1.1 Inner product of differential forms (dot)
      • 1.1.2. The volume form \(\eta\) (volumeForm)
      • 1.1.3. Hodge dual (hodgeStar)
      • 1.1.4 Interior product (interiorProduct)
      • 1.1.5 The Lie derivative (lieDerivative)
      • 1.1.6 The CoDifferential \(\delta\) (codifferential)
      • 1.1.7 The sign of a metric \(s(g)\) (s)
      • 1.1.8 The inverse Hodge star \(\star^{-1}\) (invHodgeStar)
      • 1.1.9 The Hodge-Laplacian \(\Delta_g\) (hodgeLaplacian)
    • Bibliography
  • 2 Export
    • 2.0 Package Details
    • 2.1 The metric g
    • 2.2 Exported Functions
      • 2.2.1 Volume Form
      • 2.2.1 Scalar Product
      • 2.2.2 Hodge Star Operator
      • 2.2.3 Interior Product
      • 2.2.4 Lie Derivative
      • 2.2.5 Projection
      • 2.2.6 Monomials
      • 2.2.7 Atomize Basis Term
      • 2.2.8 Conjugate Basis Term
      • 2.2.9 Scalar and Vector Field
      • 2.2.10 Miscellaneous Functions
  • 3 Implementation
    • 3.0 Implementation Notes
      • 3.1 Internal Representation
      • 3.2 dot :: inner product
      • 3.3 hodgeStar :: Hodge dual
      • 3.4 interiorProduct :: Interior product
      • 3.5 lieDerivative :: Lie derivative
      • 3.6 proj :: Projection
  • 4 Usage
    • 4.0 Examples
      • 4.1 Calculus in \(\mathbb{R}^3\)
      • 4.2 Faraday 2-form
      • 4.3 Some Examples from Maple
      • 4.4 More examples (way of working)

Indices and tables¶

  • Index
  • Module Index
  • Search Page

Table Of Contents

  • FriCAS :: DifferentialForms
    • Indices and tables

Next topic

1 Theory

This Page

  • Show Source

Quick search

Navigation

  • index
  • next |
  • DifferentialForms 1.1.0 documentation »
© Copyright 2016, Kurt Pagani <nilqed@gmail.com>. Created using Sphinx 1.4.6.