utsode.spad line 125 [edit on github]
Taylor series solutions of explicit ODE's
.
seriesSolve(eq, y, x = a, b)
is equivalent to seriesSolve(eq = 0, y, x = a, y a = b)
.
seriesSolve(eq, y, x = a, y a = b)
is equivalent to seriesSolve(eq=0, y, x=a, y a = b)
.
seriesSolve(eq, y, x = a, [b0, ..., bn])
is equivalent to seriesSolve(eq = 0, y, x = a, [b0, ..., b(n-1)])
.
seriesSolve(eq, y, x=a, b)
is equivalent to seriesSolve(eq, y, x=a, y a = b)
.
seriesSolve(eq, y, x=a, y a = b)
returns a Taylor series solution of eq
around x
= a with initial condition y(a) = b
. Note: eq
must be of the form f(x, y x) y'(x) + g(x, y x) = h(x, y x)
.
seriesSolve(eq, y, x=a, [b0, ..., b(n-1)])
returns a Taylor series solution of eq
around x = a
with initial conditions y(a) = b0
, y'(a) = b1
, y''(a) = b2
, ..., y(n-1)(a) = b(n-1)
eq
must be of the form f(x, y x, y'(x), ..., y(n-1)(x)) y(n)(x) + g(x, y x, y'(x), ..., y(n-1)(x)) = h(x, y x, y'(x), ..., y(n-1)(x))
.
seriesSolve([eq1, ..., eqn], [y1, ..., yn], x=a, [b1, ..., bn])
is equivalent to seriesSolve([eq1=0, ..., eqn=0], [y1, ..., yn], x=a, [b1, ..., bn])
.
seriesSolve([eq1, ..., eqn], [y1, ..., yn], x = a, [y1 a = b1, ..., yn a = bn])
is equivalent to seriesSolve([eq1=0, ..., eqn=0], [y1, ..., yn], x = a, [y1 a = b1, ..., yn a = bn])
.
seriesSolve([eq1, ..., eqn], [y1, ..., yn], x=a, [b1, ..., bn])
is equivalent to seriesSolve([eq1, ..., eqn], [y1, ..., yn], x = a, [y1 a = b1, ..., yn a = bn])
.
seriesSolve([eq1, ..., eqn], [y1, ..., yn], x = a, [y1 a = b1, ..., yn a = bn])
returns a taylor series solution of [eq1, ..., eqn]
around x = a
with initial conditions
. Note: eqi must be of the form yi
(a) = bi
.fi
(x, y1 x, y2 x, ..., yn x) y1'(x) + gi
(x, y1 x, y2 x, ..., yn x) = h(x, y1 x, y2 x, ..., yn x)