LiouvillianFunctionCategory
trigcat.spad line 178
[edit on github]
Category for the transcendental Liouvillian functions.
- Chi : % -> %
Chi(x) returns the hyperbolic cosine integral of x, i.e. the integral of cosh(x) / x dx.
- Ci : % -> %
Ci(x) returns the cosine integral of x, i.e. the integral of cos(x) / x dx.
- Ei : % -> %
Ei(x) returns the exponential integral of x, i.e. the integral of exp(x)/x dx.
- Shi : % -> %
Shi(x) returns the hyperbolic sine integral of x, i.e. the integral of sinh(x) / x dx.
- Si : % -> %
Si(x) returns the sine integral of x, i.e. the integral of sin(x) / x dx.
- ^ : (%, %) -> %
- from ElementaryFunctionCategory
- acos : % -> %
- from ArcTrigonometricFunctionCategory
- acosh : % -> %
- from ArcHyperbolicFunctionCategory
- acot : % -> %
- from ArcTrigonometricFunctionCategory
- acoth : % -> %
- from ArcHyperbolicFunctionCategory
- acsc : % -> %
- from ArcTrigonometricFunctionCategory
- acsch : % -> %
- from ArcHyperbolicFunctionCategory
- asec : % -> %
- from ArcTrigonometricFunctionCategory
- asech : % -> %
- from ArcHyperbolicFunctionCategory
- asin : % -> %
- from ArcTrigonometricFunctionCategory
- asinh : % -> %
- from ArcHyperbolicFunctionCategory
- atan : % -> %
- from ArcTrigonometricFunctionCategory
- atanh : % -> %
- from ArcHyperbolicFunctionCategory
- cos : % -> %
- from TrigonometricFunctionCategory
- cosh : % -> %
- from HyperbolicFunctionCategory
- cot : % -> %
- from TrigonometricFunctionCategory
- coth : % -> %
- from HyperbolicFunctionCategory
- csc : % -> %
- from TrigonometricFunctionCategory
- csch : % -> %
- from HyperbolicFunctionCategory
- dilog : % -> %
dilog(x) returns the dilogarithm of x, i.e. the integral of log(x) / (1 - x) dx.
- erf : % -> %
erf(x) returns the error function of x, i.e. 2 / sqrt(%pi) times the integral of exp(-x^2) dx.
- erfi : % -> %
erfi(x) denotes -%i*erf(%i*x)
- exp : % -> %
- from ElementaryFunctionCategory
- fresnelC : % -> %
fresnelC(x) is the Fresnel integral C, defined by C(x) = integrate(cos(%pi*t^2/2), t=0..x)
- fresnelS : % -> %
fresnelS(x) is the Fresnel integral S, defined by S(x) = integrate(sin(%pi*t^2/2), t=0..x)
- integral : (%, SegmentBinding(%)) -> %
- from PrimitiveFunctionCategory
- integral : (%, Symbol) -> %
- from PrimitiveFunctionCategory
- li : % -> %
li(x) returns the logarithmic integral of x, i.e. the integral of dx / log(x).
- log : % -> %
- from ElementaryFunctionCategory
- pi : () -> %
- from TranscendentalFunctionCategory
- sec : % -> %
- from TrigonometricFunctionCategory
- sech : % -> %
- from HyperbolicFunctionCategory
- sin : % -> %
- from TrigonometricFunctionCategory
- sinh : % -> %
- from HyperbolicFunctionCategory
- tan : % -> %
- from TrigonometricFunctionCategory
- tanh : % -> %
- from HyperbolicFunctionCategory
HyperbolicFunctionCategory
ElementaryFunctionCategory
TrigonometricFunctionCategory
TranscendentalFunctionCategory
ArcTrigonometricFunctionCategory
ArcHyperbolicFunctionCategory
PrimitiveFunctionCategory