special.spad line 1 [edit on github]
This package provides special functions for double precision real and complex floating point.
besselI(v, x) is the modified Bessel function of the first kind, I(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0.
besselI(v, x) is the modified Bessel function of the first kind, I(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0.
besselJ(v, x) is the Bessel function of the first kind, J(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0.
besselJ(v, x) is the Bessel function of the first kind, J(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0.
besselK(v, x) is the modified Bessel function of the second kind, K(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0. Note: The default implementation uses the relation K(v, x) = %pi/2*(I(-v, x) - I(v, x))/sin(v*% so is not valid for integer values of pi)v.
besselK(v, x) is the modified Bessel function of the second kind, K(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0. Note: The default implementation uses the relation K(v, x) = %pi/2*(I(-v, x) - I(v, x))/sin(v*%. so is not valid for integer values of pi)v.
besselY(v, x) is the Bessel function of the second kind, Y(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0. Note: The default implementation uses the relation Y(v, x) = (J(v, x) cos(v*% so is not valid for integer values of pi) - J(-v, x))/sin(v*%pi)v.
besselY(v, x) is the Bessel function of the second kind, Y(v, x). This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0. Note: The default implementation uses the relation Y(v, x) = (J(v, x) cos(v*% so is not valid for integer values of pi) - J(-v, x))/sin(v*%pi)v.