special.spad line 1 [edit on github]
This package provides special functions for double precision real and complex floating point.
besselI(v, x)
is the modified Bessel function of the first kind, I(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
.
besselI(v, x)
is the modified Bessel function of the first kind, I(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
.
besselJ(v, x)
is the Bessel function of the first kind, J(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
.
besselJ(v, x)
is the Bessel function of the first kind, J(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
.
besselK(v, x)
is the modified Bessel function of the second kind, K(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
. Note: The default implementation uses the relation K(v, x) = %pi/2*(I(-v, x) - I(v, x))/sin(v*%
so is not valid for integer values of pi
)v
.
besselK(v, x)
is the modified Bessel function of the second kind, K(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0
. Note: The default implementation uses the relation K(v, x) = %pi/2*(I(-v, x) - I(v, x))/sin(v*%
. so is not valid for integer values of pi
)v
.
besselY(v, x)
is the Bessel function of the second kind, Y(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
. Note: The default implementation uses the relation Y(v, x) = (J(v, x) cos(v*%
so is not valid for integer values of pi
) - J(-v, x))/sin(v*%pi
)v
.
besselY(v, x)
is the Bessel function of the second kind, Y(v, x)
. This function satisfies the differential equation: x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0
. Note: The default implementation uses the relation Y(v, x) = (J(v, x) cos(v*%
so is not valid for integer values of pi
) - J(-v, x))/sin(v*%pi
)v
.