Complex(R)
gaussian.spad line 543
[edit on github]
Complex(R) creates the domain of elements of the form a + b * i
where a
and b
come from the ring R
, and i
is a new element such that i^2 = -1
.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if R has Field
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- OMwrite : % -> String if R has OpenMath
- from OpenMath
- OMwrite : (%, Boolean) -> String if R has OpenMath
- from OpenMath
- OMwrite : (OpenMathDevice, %) -> Void if R has OpenMath
- from OpenMath
- OMwrite : (OpenMathDevice, %, Boolean) -> Void if R has OpenMath
- from OpenMath
- ^ : (%, %) -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> % if R has RealNumberSystem
- from ComplexCategory(R)
- acos : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- acot : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- argument : % -> R if R has TranscendentalFunctionCategory
- from ComplexCategory(R)
- asec : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- asech : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- asin : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if R has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- basis : () -> Vector(%)
- from FramedModule(R)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- charthRoot : % -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : Fraction(Integer) -> % if R has Field or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complex : (R, R) -> %
- from ComplexCategory(R)
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- conjugate : % -> %
- from ComplexCategory(R)
- convert : SparseUnivariatePolynomial(R) -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> Complex(DoubleFloat) if R has RealConstant
- from ConvertibleTo(Complex(DoubleFloat))
- convert : % -> Complex(Float) if R has RealConstant
- from ConvertibleTo(Complex(Float))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- convert : % -> SparseUnivariatePolynomial(R)
- from ConvertibleTo(SparseUnivariatePolynomial(R))
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- cos : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- cosh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- cot : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- coth : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- createPrimitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- csc : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- csch : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- definingPolynomial : () -> SparseUnivariatePolynomial(R)
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- derivationCoordinates : (Vector(%), Mapping(R, R)) -> Matrix(R) if R has Field
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- differentiate : % -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- discreteLog : % -> NonNegativeInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- discriminant : () -> R
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- discriminant : Vector(%) -> R
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- elt : (%, R) -> % if R has Eltable(R, R)
- from Eltable(R, %)
- enumerate : () -> List(%) if R has Finite
- from Finite
- euclideanSize : % -> NonNegativeInteger if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(Symbol), List(R)) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- eval : (%, Symbol, R) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- exp : % -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field or R has IntegerNumberSystem
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has IntegralDomain
- from ComplexCategory(R)
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- factor : % -> Factored(%) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has Field or R has IntegerNumberSystem
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger)) if R has FiniteFieldCategory
- from FiniteFieldCategory
- gcd : (%, %) -> % if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from GcdDomain
- gcd : List(%) -> % if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from PolynomialFactorizationExplicit
- generator : () -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- imag : % -> R
- from ComplexCategory(R)
- imaginary : () -> %
- from ComplexCategory(R)
- index : PositiveInteger -> % if R has Finite
- from Finite
- init : () -> % if R has FiniteFieldCategory
- from StepThrough
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from GcdDomain
- lcm : List(%) -> % if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has IntegerNumberSystem or R has Field
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lift : % -> SparseUnivariatePolynomial(R)
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- log : % -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from FullyEvalableOver(R)
- minimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has Field
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- nextItem : % -> Union(%, "failed") if R has FiniteFieldCategory
- from StepThrough
- norm : % -> R
- from ComplexCategory(R)
- nthRoot : (%, Integer) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger) if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- order : % -> PositiveInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- pi : () -> % if R has TranscendentalFunctionCategory
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- polarCoordinates : % -> Record(r : R, phi : R) if R has RealNumberSystem and R has TranscendentalFunctionCategory
- from ComplexCategory(R)
- prime? : % -> Boolean if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has Field or R has IntegerNumberSystem
- from UniqueFactorizationDomain
- primeFrobenius : % -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primitive? : % -> Boolean if R has FiniteFieldCategory
- from FiniteFieldCategory
- primitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field or R has IntegerNumberSystem
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- rational : % -> Fraction(Integer) if R has IntegerNumberSystem
- from ComplexCategory(R)
- rational? : % -> Boolean if R has IntegerNumberSystem
- from ComplexCategory(R)
- rationalIfCan : % -> Union(Fraction(Integer), "failed") if R has IntegerNumberSystem
- from ComplexCategory(R)
- real : % -> R
- from ComplexCategory(R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : SparseUnivariatePolynomial(R) -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- reduce : Fraction(SparseUnivariatePolynomial(R)) -> Union(%, "failed") if R has Field
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- regularRepresentation : % -> Matrix(R)
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- rem : (%, %) -> % if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- representationType : () -> Union("prime", "polynomial", "normal", "cyclic") if R has FiniteFieldCategory
- from FiniteFieldCategory
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- sech : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- sin : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- sinh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- sizeLess? : (%, %) -> Boolean if R has Field or R has IntegerNumberSystem
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- sqrt : % -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- squareFree : % -> Factored(%) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has Field or R has IntegerNumberSystem
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has Field or R has IntegerNumberSystem
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has EuclideanDomain and R has PolynomialFactorizationExplicit or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger) if R has FiniteFieldCategory
- from FiniteFieldCategory
- tan : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- tanh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- trace : % -> R
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- traceMatrix : () -> Matrix(R)
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- traceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- unit? : % -> Boolean if R has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if R has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(Complex(Float))
Eltable(R, %)
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
LinearlyExplicitOver(R)
Evalable(R)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
BiModule(R, R)
ArcTrigonometricFunctionCategory
Ring
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
TranscendentalFunctionCategory
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
RetractableTo(R)
AbelianSemiGroup
unitsKnown
FullyLinearlyExplicitOver(R)
Algebra(R)
PatternMatchable(Float)
MagmaWithUnit
FramedModule(R)
noZeroDivisors
RetractableTo(Fraction(Integer))
CoercibleFrom(R)
ConvertibleTo(SparseUnivariatePolynomial(R))
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
Magma
RightModule(R)
GcdDomain
LeftModule(%)
NonAssociativeRing
multiplicativeValuation
ArcHyperbolicFunctionCategory
NonAssociativeAlgebra(%)
PartialDifferentialRing(Symbol)
CharacteristicZero
ComplexCategory(R)
Module(R)
BiModule(%, %)
CommutativeRing
Algebra(%)
FullyEvalableOver(R)
DifferentialRing
PolynomialFactorizationExplicit
RadicalCategory
DivisionRing
IntegralDomain
arbitraryPrecision
NonAssociativeRng
OpenMath
ConvertibleTo(Pattern(Float))
InnerEvalable(R, R)
LeftOreRing
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
RetractableTo(Integer)
CommutativeStar
AbelianMonoid
InnerEvalable(Symbol, R)
Comparable
RightModule(%)
Hashable
SemiRng
Patternable(R)
FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
Module(%)
LinearlyExplicitOver(Integer)
CoercibleTo(OutputForm)
Monoid
FiniteFieldCategory
NonAssociativeAlgebra(R)
HyperbolicFunctionCategory
Finite
Algebra(Fraction(Integer))
Module(Fraction(Integer))
MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
BasicType
RightModule(Integer)
LeftModule(Fraction(Integer))
FramedAlgebra(R, SparseUnivariatePolynomial(R))
ConvertibleTo(Complex(DoubleFloat))
ConvertibleTo(Pattern(Integer))
TrigonometricFunctionCategory
CoercibleFrom(Fraction(Integer))
SetCategory
NonAssociativeSemiRng
FieldOfPrimeCharacteristic
BiModule(Fraction(Integer), Fraction(Integer))
FullyPatternMatchable(R)
PatternMatchable(Integer)
StepThrough
AbelianGroup
DifferentialExtension(R)
ElementaryFunctionCategory