FramedAlgebra(R, UP)

algcat.spad line 149 [edit on github]

A FramedAlgebra is a FiniteRankAlgebra together with a fixed R-module basis.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
basis : () -> Vector(%)
from FramedModule(R)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
characteristicPolynomial : % -> UP
from FiniteRankAlgebra(R, UP)
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coerce : R -> %
from Algebra(R)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : Vector(R) -> %
from FramedModule(R)
convert : % -> InputForm if R has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(R)
from FramedModule(R)
coordinates : Vector(%) -> Matrix(R)
from FramedModule(R)
coordinates : (Vector(%), Vector(%)) -> Matrix(R)
from FiniteRankAlgebra(R, UP)
coordinates : % -> Vector(R)
from FramedModule(R)
coordinates : (%, Vector(%)) -> Vector(R)
from FiniteRankAlgebra(R, UP)
discriminant : () -> R

discriminant() = determinant(traceMatrix()).

discriminant : Vector(%) -> R
from FiniteRankAlgebra(R, UP)
enumerate : () -> List(%) if R has Finite
from Finite
hash : % -> SingleInteger if R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if R has Hashable
from Hashable
index : PositiveInteger -> % if R has Finite
from Finite
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
lookup : % -> PositiveInteger if R has Finite
from Finite
minimalPolynomial : % -> UP if R has Field
from FiniteRankAlgebra(R, UP)
norm : % -> R
from FiniteRankAlgebra(R, UP)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
random : () -> % if R has Finite
from Finite
rank : () -> PositiveInteger
from FiniteRankAlgebra(R, UP)
recip : % -> Union(%, "failed")
from MagmaWithUnit
regularRepresentation : % -> Matrix(R)

regularRepresentation(a) returns the matrix m of the linear map defined by left multiplication by a with respect to the fixed basis. That is for all x we have coordinates(a*x) = m*coordinates(x).

regularRepresentation : (%, Vector(%)) -> Matrix(R)
from FiniteRankAlgebra(R, UP)
represents : Vector(R) -> %
from FramedModule(R)
represents : (Vector(R), Vector(%)) -> %
from FiniteRankAlgebra(R, UP)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if R has Finite
from Finite
smaller? : (%, %) -> Boolean if R has Finite
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
trace : % -> R
from FiniteRankAlgebra(R, UP)
traceMatrix : () -> Matrix(R)

traceMatrix() is the n-by-n matrix ( Tr(vi * vj) ), where v1, ..., vn are the elements of the fixed basis.

traceMatrix : Vector(%) -> Matrix(R)
from FiniteRankAlgebra(R, UP)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Comparable

ConvertibleTo(InputForm)

Algebra(R)

RightModule(%)

Monoid

AbelianMonoid

BiModule(R, R)

NonAssociativeSemiRng

NonAssociativeAlgebra(R)

FiniteRankAlgebra(R, UP)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

LeftModule(%)

LeftModule(R)

Finite

SetCategory

CoercibleTo(OutputForm)

Rng

FramedModule(R)

TwoSidedRecip

Magma

SemiGroup

BiModule(%, %)

unitsKnown

AbelianGroup

AbelianSemiGroup

NonAssociativeSemiRing

RightModule(R)

Module(R)

CharacteristicZero

NonAssociativeRng

Ring

SemiRng

Hashable

BasicType

SemiRing