FramedAlgebra(R, UP)
algcat.spad line 149
[edit on github]
A FramedAlgebra is a FiniteRankAlgebra together with a fixed R
-module basis.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- basis : () -> Vector(%)
- from FramedModule(R)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> UP
- from FiniteRankAlgebra(R, UP)
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankAlgebra(R, UP)
- discriminant : () -> R
discriminant()
= determinant(traceMatrix()).
- discriminant : Vector(%) -> R
- from FiniteRankAlgebra(R, UP)
- enumerate : () -> List(%) if R has Finite
- from Finite
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- minimalPolynomial : % -> UP if R has Field
- from FiniteRankAlgebra(R, UP)
- norm : % -> R
- from FiniteRankAlgebra(R, UP)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(R, UP)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- regularRepresentation : % -> Matrix(R)
regularRepresentation(a)
returns the matrix m
of the linear map defined by left multiplication by a
with respect to the fixed basis. That is for all x
we have coordinates(a*x) = m*coordinates(x)
.
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankAlgebra(R, UP)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- trace : % -> R
- from FiniteRankAlgebra(R, UP)
- traceMatrix : () -> Matrix(R)
traceMatrix()
is the n
-by-n
matrix ( Tr(vi
* vj)
), where v1
, ..., vn
are the elements of the fixed basis.
- traceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Comparable
ConvertibleTo(InputForm)
Algebra(R)
RightModule(%)
Monoid
AbelianMonoid
BiModule(R, R)
NonAssociativeSemiRng
NonAssociativeAlgebra(R)
FiniteRankAlgebra(R, UP)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
LeftModule(%)
LeftModule(R)
Finite
SetCategory
CoercibleTo(OutputForm)
Rng
FramedModule(R)
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
unitsKnown
AbelianGroup
AbelianSemiGroup
NonAssociativeSemiRing
RightModule(R)
Module(R)
CharacteristicZero
NonAssociativeRng
Ring
SemiRng
Hashable
BasicType
SemiRing