NonNegativeInteger

integer.spad line 213 [edit on github]

NonNegativeInteger provides functions for non negative integers.

* : (%, %) -> %
from LeftModule(%)
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
convert : % -> InputForm
from ConvertibleTo(InputForm)
divide : (%, %) -> Record(quotient : %, remainder : %)

divide(a, b) returns a record containing both remainder and quotient.

exquo : (%, %) -> Union(%, "failed")

exquo(a,b) returns the quotient of a and b, or "failed" if b is zero or a rem b is zero.

gcd : (%, %) -> %

gcd(a, b) computes the greatest common divisor of two non negative integers a and b.

hash : % -> SingleInteger
from Hashable
hashUpdate! : (HashState, %) -> HashState
from Hashable
inf : (%, %) -> %
from OrderedAbelianMonoidSup
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
qcoerce : Integer -> %

qcoerce(n) coerces n to % trusting that n is nonnegative

quo : (%, %) -> %

a quo b returns the quotient of a and b, forgetting the remainder.

random : % -> %

random(n) returns a random integer from 0 to n-1.

recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %

a rem b returns the remainder of a and b.

rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
shift : (%, Integer) -> %

shift(a, i) shift a by i bits.

smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
sup : (%, %) -> %
from OrderedAbelianMonoidSup
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

OrderedSet

RightModule(%)

Monoid

SemiGroup

OrderedCancellationAbelianMonoid

CancellationAbelianMonoid

LeftModule(%)

TwoSidedRecip

MagmaWithUnit

Hashable

OrderedAbelianMonoidSup

BasicType

AbelianMonoid

Magma

SemiRing

NonAssociativeSemiRing

SetCategory

AbelianSemiGroup

Comparable

OrderedAbelianMonoid

OrderedAbelianSemiGroup

BiModule(%, %)

PartialOrder

NonAssociativeSemiRng

CommutativeStar

CoercibleTo(OutputForm)

SemiRng

ConvertibleTo(InputForm)