NonNegativeInteger
integer.spad line 213
[edit on github]
NonNegativeInteger provides functions for non negative integers.
- * : (%, %) -> %
- from LeftModule(%)
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- divide : (%, %) -> Record(quotient : %, remainder : %)
divide(a, b) returns a record containing both remainder and quotient.
- exquo : (%, %) -> Union(%, "failed")
exquo(a,b) returns the quotient of a and b, or "failed" if b is zero or a rem b is zero.
- gcd : (%, %) -> %
gcd(a, b) computes the greatest common divisor of two non negative integers a and b.
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- inf : (%, %) -> %
- from OrderedAbelianMonoidSup
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- qcoerce : Integer -> %
qcoerce(n) coerces n to % trusting that n is nonnegative
- quo : (%, %) -> %
a quo b returns the quotient of a and b, forgetting the remainder.
- random : % -> %
random(n) returns a random integer from 0 to n-1.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
a rem b returns the remainder of a and b.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- shift : (%, Integer) -> %
shift(a, i) shift a by i bits.
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- sup : (%, %) -> %
- from OrderedAbelianMonoidSup
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
OrderedSet
RightModule(%)
Monoid
SemiGroup
OrderedCancellationAbelianMonoid
CancellationAbelianMonoid
LeftModule(%)
TwoSidedRecip
MagmaWithUnit
Hashable
OrderedAbelianMonoidSup
BasicType
AbelianMonoid
Magma
SemiRing
NonAssociativeSemiRing
SetCategory
AbelianSemiGroup
Comparable
OrderedAbelianMonoid
OrderedAbelianSemiGroup
BiModule(%, %)
PartialOrder
NonAssociativeSemiRng
CommutativeStar
CoercibleTo(OutputForm)
SemiRng
ConvertibleTo(InputForm)