SingleInteger
si.spad line 142
[edit on github]
SingleInteger is intended to support machine integer arithmetic.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- /\ : (%, %) -> %
n
/\
m
returns the bit-by-bit logical and of the single integers n
and m
.
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- And : (%, %) -> %
And(n, m)
returns the bit-by-bit logical and of the single integers n
and m
.
- D : % -> %
- from DifferentialRing
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- Not : % -> %
Not(n)
returns the bit-by-bit logical not of the single integer n
.
- OMwrite : % -> String
- from OpenMath
- OMwrite : (%, Boolean) -> String
- from OpenMath
- OMwrite : (OpenMathDevice, %) -> Void
- from OpenMath
- OMwrite : (OpenMathDevice, %, Boolean) -> Void
- from OpenMath
- Or : (%, %) -> %
Or(n, m)
returns the bit-by-bit logical or of the single integers n
and m
.
- T : () -> %
- from BoundedMeetSemilattice
- \/ : (%, %) -> %
n
\/
m
returns the bit-by-bit logical or of the single integers n
and m
.
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- _|_ : () -> %
- from BoundedJoinSemilattice
- abs : % -> %
- from OrderedRing
- addmod : (%, %, %) -> %
- from IntegerNumberSystem
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- base : () -> %
- from IntegerNumberSystem
- binomial : (%, %) -> %
- from CombinatorialFunctionCategory
- bit? : (%, %) -> Boolean
- from IntegerNumberSystem
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> DoubleFloat
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float
- from ConvertibleTo(Float)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- convert : % -> Integer
- from ConvertibleTo(Integer)
- convert : % -> Pattern(Integer)
- from ConvertibleTo(Pattern(Integer))
- convert : % -> String
- from ConvertibleTo(String)
- copy : % -> %
- from IntegerNumberSystem
- dec : % -> %
- from IntegerNumberSystem
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- even? : % -> Boolean
- from IntegerNumberSystem
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorial : % -> %
- from CombinatorialFunctionCategory
- false : () -> %
- from Logic
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- inc : % -> %
- from IntegerNumberSystem
- init : () -> %
- from StepThrough
- invmod : (%, %) -> %
- from IntegerNumberSystem
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- length : % -> %
- from IntegerNumberSystem
- mask : % -> %
- from IntegerNumberSystem
- max : () -> %
max()
returns the largest single integer.
- max : (%, %) -> %
- from OrderedSet
- min : () -> %
min()
returns the smallest single integer.
- min : (%, %) -> %
- from OrderedSet
- mulmod : (%, %, %) -> %
- from IntegerNumberSystem
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- nextItem : % -> Union(%, "failed")
- from StepThrough
- not : % -> %
not(n)
returns the bit-by-bit logical not of the single integer n
.
- odd? : % -> Boolean
- from IntegerNumberSystem
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
- from PatternMatchable(Integer)
- permutation : (%, %) -> %
- from CombinatorialFunctionCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean
- from OrderedRing
- positiveRemainder : (%, %) -> %
- from IntegerNumberSystem
- powmod : (%, %, %) -> %
- from IntegerNumberSystem
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- qconvert : Integer -> %
qconvert(x)
converts x
to % trusting that x
is in correct range.
- quo : (%, %) -> %
- from EuclideanDomain
- random : % -> %
- from IntegerNumberSystem
- rational : % -> Fraction(Integer)
- from IntegerNumberSystem
- rational? : % -> Boolean
- from IntegerNumberSystem
- rationalIfCan : % -> Union(Fraction(Integer), "failed")
- from IntegerNumberSystem
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- shift : (%, %) -> %
- from IntegerNumberSystem
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- submod : (%, %, %) -> %
- from IntegerNumberSystem
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- symmetricRemainder : (%, %) -> %
- from IntegerNumberSystem
- true : () -> %
- from Logic
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- xor : (%, %) -> %
xor(n, m)
returns the bit-by-bit logical xor of the single integers n
and m
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~ : % -> %
~ n
returns the bit-by-bit logical not of the single integer n
.
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(Float)
PrincipalIdealDomain
ConvertibleTo(Integer)
NonAssociativeSemiRing
BiModule(%, %)
ConvertibleTo(InputForm)
Logic
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
OrderedAbelianGroup
SemiRing
EntireRing
JoinSemilattice
unitsKnown
noZeroDivisors
OrderedSet
Magma
SemiGroup
DistributiveLattice
LeftModule(%)
Lattice
NonAssociativeRing
UniqueFactorizationDomain
GcdDomain
NonAssociativeAlgebra(%)
CharacteristicZero
OrderedIntegralDomain
CommutativeRing
Algebra(%)
DifferentialRing
OrderedAbelianMonoid
CombinatorialFunctionCategory
BoundedMeetSemilattice
OpenMath
BoundedDistributiveLattice
MeetSemilattice
NonAssociativeSemiRng
PartialOrder
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedRing
CommutativeStar
AbelianMonoid
MagmaWithUnit
RightModule(%)
Hashable
RealConstant
ConvertibleTo(String)
ConvertibleTo(DoubleFloat)
OrderedAbelianSemiGroup
Module(%)
CoercibleTo(OutputForm)
ConvertibleTo(Pattern(Integer))
SemiRng
Monoid
LeftOreRing
BasicType
Ring
Canonical
AbelianSemiGroup
IntegralDomain
SetCategory
BoundedJoinSemilattice
IntegerNumberSystem
multiplicativeValuation
BoundedLattice
NonAssociativeRng
PatternMatchable(Integer)
StepThrough
AbelianGroup