OrderedRing

catdef.spad line 1055 [edit on github]

Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %

abs(x) returns the absolute value of x.

annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
negative? : % -> Boolean

negative?(x) tests whether x is strictly less than 0.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
positive? : % -> Boolean

positive?(x) tests whether x is strictly greater than 0.

recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sign : % -> Integer

sign(x) is 1 if x is positive, -1 if x is negative, 0 if x equals 0.

smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Rng

Monoid

MagmaWithUnit

CharacteristicZero

OrderedCancellationAbelianMonoid

CancellationAbelianMonoid

LeftModule(%)

OrderedAbelianSemiGroup

Ring

unitsKnown

RightModule(%)

SemiRing

NonAssociativeRing

CoercibleTo(OutputForm)

OrderedSet

AbelianGroup

AbelianSemiGroup

SetCategory

Comparable

SemiGroup

AbelianMonoid

OrderedAbelianMonoid

NonAssociativeSemiRng

PartialOrder

BasicType

BiModule(%, %)

NonAssociativeSemiRing

Magma

SemiRng

NonAssociativeRng

OrderedAbelianGroup