OrderedAbelianGroup
catdef.spad line 911
[edit on github]
Ordered sets which are also abelian groups, such that the addition preserves the ordering.
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- latex : % -> String
- from SetCategory
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
OrderedCancellationAbelianMonoid
CancellationAbelianMonoid
CoercibleTo(OutputForm)
OrderedAbelianMonoid
OrderedAbelianSemiGroup
AbelianMonoid
AbelianSemiGroup
Comparable
OrderedSet
BasicType
SetCategory
AbelianGroup
PartialOrder