OrderedAbelianGroup

catdef.spad line 911 [edit on github]

Ordered sets which are also abelian groups, such that the addition preserves the ordering.

* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
latex : % -> String
from SetCategory
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
opposite? : (%, %) -> Boolean
from AbelianMonoid
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

OrderedCancellationAbelianMonoid

CancellationAbelianMonoid

CoercibleTo(OutputForm)

OrderedAbelianMonoid

OrderedAbelianSemiGroup

AbelianMonoid

AbelianSemiGroup

Comparable

OrderedSet

BasicType

SetCategory

AbelianGroup

PartialOrder