PositiveInteger

integer.spad line 258 [edit on github]

PositiveInteger provides functions for positive integers.

* : (%, %) -> %
from Magma
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
convert : % -> InputForm
from ConvertibleTo(InputForm)
gcd : (%, %) -> %

gcd(a, b) computes the greatest common divisor of two positive integers a and b.

hash : % -> SingleInteger
from Hashable
hashUpdate! : (HashState, %) -> HashState
from Hashable
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
one? : % -> Boolean
from MagmaWithUnit
qcoerce : Integer -> %

qcoerce(n) coerces n to % trusting that n is positive

recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from MagmaWithUnit
smaller? : (%, %) -> Boolean
from Comparable
~= : (%, %) -> Boolean
from BasicType

TwoSidedRecip

Monoid

SemiGroup

CommutativeStar

Hashable

CoercibleTo(OutputForm)

OrderedSet

Magma

AbelianSemiGroup

SetCategory

Comparable

OrderedMonoid

PartialOrder

BasicType

OrderedSemiGroup

MagmaWithUnit

OrderedAbelianSemiGroup

ConvertibleTo(InputForm)