OrderedAbelianSemiGroup
catdef.spad line 969
[edit on github]
Ordered sets which are also abelian semigroups, such that the addition preserves the ordering. x < y => x+z < y+z
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- latex : % -> String
- from SetCategory
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- smaller? : (%, %) -> Boolean
- from Comparable
- ~= : (%, %) -> Boolean
- from BasicType
PartialOrder
Comparable
OrderedSet
SetCategory
AbelianSemiGroup
BasicType
CoercibleTo(OutputForm)