OrderedAbelianSemiGroup

catdef.spad line 969 [edit on github]

Ordered sets which are also abelian semigroups, such that the addition preserves the ordering. x < y => x+z < y+z

* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
latex : % -> String
from SetCategory
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
smaller? : (%, %) -> Boolean
from Comparable
~= : (%, %) -> Boolean
from BasicType

PartialOrder

Comparable

OrderedSet

SetCategory

AbelianSemiGroup

BasicType

CoercibleTo(OutputForm)