NonAssociativeRng
naalgc.spad line 142
[edit on github]
NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit. Axioms x*
(y+z
) = x*y + x*z
(x+y)*z
= x*z
+ y*z
Common Additional Axioms noZeroDivisorsab = 0 =>
a=0
or b=0
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
associator(a, b, c)
returns (a*b)*c-a*(b*c)
.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
commutator(a, b)
returns a*b-b*a
.
- latex : % -> String
- from SetCategory
- leftPower : (%, PositiveInteger) -> %
- from Magma
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- rightPower : (%, PositiveInteger) -> %
- from Magma
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CancellationAbelianMonoid
CoercibleTo(OutputForm)
AbelianMonoid
AbelianGroup
AbelianSemiGroup
SetCategory
Magma
NonAssociativeSemiRng
BasicType