Rng
catdef.spad line 1389
[edit on github]
The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
annihilate?(x,y)
holds when the product of x
and y
is 0
.
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- latex : % -> String
- from SetCategory
- leftPower : (%, PositiveInteger) -> %
- from Magma
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- rightPower : (%, PositiveInteger) -> %
- from Magma
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
SemiRng
NonAssociativeRng
CoercibleTo(OutputForm)
AbelianSemiGroup
BiModule(%, %)
BasicType
AbelianMonoid
AbelianGroup
SemiGroup
LeftModule(%)
RightModule(%)
Magma
NonAssociativeSemiRng
CancellationAbelianMonoid
SetCategory