Rng

catdef.spad line 1389 [edit on github]

The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean

annihilate?(x,y) holds when the product of x and y is 0.

antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
latex : % -> String
from SetCategory
leftPower : (%, PositiveInteger) -> %
from Magma
opposite? : (%, %) -> Boolean
from AbelianMonoid
rightPower : (%, PositiveInteger) -> %
from Magma
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

SemiRng

NonAssociativeRng

CoercibleTo(OutputForm)

AbelianSemiGroup

BiModule(%, %)

BasicType

AbelianMonoid

AbelianGroup

SemiGroup

LeftModule(%)

RightModule(%)

Magma

NonAssociativeSemiRng

CancellationAbelianMonoid

SetCategory