IntegerNumberSystem
si.spad line 1
[edit on github]
An IntegerNumberSystem
is a model for the integers.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- D : % -> %
- from DifferentialRing
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- addmod : (%, %, %) -> %
addmod(a, b, p)
, 0<=a, b<p>1
, means a+b mod p
.
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- base : () -> %
base()
returns the base for the operations of IntegerNumberSystem
.
- binomial : (%, %) -> %
- from CombinatorialFunctionCategory
- bit? : (%, %) -> Boolean
bit?(n, i)
returns true
if and only if i
-th bit of n
is a 1.
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> DoubleFloat
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float
- from ConvertibleTo(Float)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- convert : % -> Integer
- from ConvertibleTo(Integer)
- convert : % -> Pattern(Integer)
- from ConvertibleTo(Pattern(Integer))
- copy : % -> %
copy(n)
gives a copy of n
.
- dec : % -> %
dec(x)
returns x - 1
.
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- even? : % -> Boolean
even?(n)
returns true
if and only if n
is even.
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorial : % -> %
- from CombinatorialFunctionCategory
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inc : % -> %
inc(x)
returns x + 1
.
- init : () -> %
- from StepThrough
- invmod : (%, %) -> %
invmod(a, b)
, 0<=a<b>1
, (a, b)=1
means 1/a mod b
.
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- length : % -> %
length(a)
length of a
in digits.
- mask : % -> %
mask(n)
returns 2^n-1
(an n
bit mask).
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- mulmod : (%, %, %) -> %
mulmod(a, b, p)
, 0<=a, b<p>1
, means a*b mod p
.
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- nextItem : % -> Union(%, "failed")
- from StepThrough
- odd? : % -> Boolean
odd?(n)
returns true
if and only if n
is odd.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
- from PatternMatchable(Integer)
- permutation : (%, %) -> %
- from CombinatorialFunctionCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean
- from OrderedRing
- positiveRemainder : (%, %) -> %
positiveRemainder(a, b)
(where b > 1
) yields r
where 0 <= r < b
and r = a rem b
.
- powmod : (%, %, %) -> %
powmod(a, b, p)
, 0<=a, b<p>1
, means a^b mod p
.
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- random : % -> %
random(n)
creates a random element from 0 to n-1
.
- rational : % -> Fraction(Integer)
rational(n)
creates a rational number (see Fraction Integer).
- rational? : % -> Boolean
rational?(n)
tests if n
is a rational number (see Fraction Integer).
- rationalIfCan : % -> Union(Fraction(Integer), "failed")
rationalIfCan(n)
creates a rational number, or returns "failed" if this is not possible.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- shift : (%, %) -> %
shift(a, i)
shift a
by i
digits.
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- submod : (%, %, %) -> %
submod(a, b, p)
, 0<=a, b<p>1
, means a-b mod p
.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- symmetricRemainder : (%, %) -> %
symmetricRemainder(a, b)
(where b > 1
) yields r
where -b/2 < r <= b/2
.
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(Float)
PrincipalIdealDomain
ConvertibleTo(Integer)
NonAssociativeSemiRing
IntegralDomain
BiModule(%, %)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
SemiRing
EntireRing
unitsKnown
noZeroDivisors
OrderedSet
UniqueFactorizationDomain
SemiGroup
Magma
GcdDomain
LeftModule(%)
NonAssociativeRing
CharacteristicZero
OrderedIntegralDomain
CommutativeRing
Algebra(%)
DifferentialRing
OrderedAbelianMonoid
CombinatorialFunctionCategory
NonAssociativeSemiRng
PartialOrder
CancellationAbelianMonoid
EuclideanDomain
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedRing
CommutativeStar
AbelianMonoid
MagmaWithUnit
RightModule(%)
RealConstant
ConvertibleTo(DoubleFloat)
OrderedAbelianSemiGroup
Module(%)
ConvertibleTo(Pattern(Integer))
CoercibleTo(OutputForm)
SemiRng
Monoid
LeftOreRing
NonAssociativeAlgebra(%)
BasicType
Ring
AbelianSemiGroup
SetCategory
multiplicativeValuation
NonAssociativeRng
PatternMatchable(Integer)
OrderedAbelianGroup
StepThrough
AbelianGroup