LeftOreRing
catdef.spad line 838
[edit on github]
This is category of left ore rings, that is noncommutaive rings without zero divisors where we can compute least left common multiple
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- latex : % -> String
- from SetCategory
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
lcmCoef(c1, c2)
computes (llcm_res, coeff1
, coeff2
) such that llcm_res is least left common multiple of c1
and c2
and llcm_res = coeff1*c1
= coeff2*c2
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
EntireRing
Monoid
noZeroDivisors
Ring
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
BasicType
unitsKnown
NonAssociativeRing
Rng
Magma
NonAssociativeSemiRng
SemiRing
AbelianGroup
NonAssociativeSemiRing
SetCategory
AbelianSemiGroup
AbelianMonoid
BiModule(%, %)
MagmaWithUnit
CoercibleTo(OutputForm)
SemiRng
NonAssociativeRng