EntireRing

catdef.spad line 350 [edit on github]

Entire Rings (non-commutative Integral Domains), i.e. a ring not necessarily commutative which has no zero divisors.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean

associates?(x, y) tests whether x and y are associates, i.e. differ by a unit factor.

associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
exquo : (%, %) -> Union(%, "failed")

exquo(a, b) either returns an element c such that c*b=a or "failed" if no such element can be found.

latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean

unit?(x) tests whether x is a unit, i.e. is invertible.

unitCanonical : % -> %

unitCanonical(x) returns unitNormal(x).canonical.

unitNormal : % -> Record(unit : %, canonical : %, associate : %)

unitNormal(x) tries to choose a canonical element from the associate class of x. The attribute canonicalUnitNormal, if asserted, means that the "canonical" element is the same across all associates of x if unitNormal(x) = [u, c, a] then u*c = x, a*u = 1.

zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

Rng

Monoid

noZeroDivisors

Ring

SemiGroup

CancellationAbelianMonoid

LeftModule(%)

BasicType

unitsKnown

NonAssociativeRing

Magma

NonAssociativeSemiRng

SemiRing

AbelianGroup

NonAssociativeSemiRing

SetCategory

AbelianSemiGroup

AbelianMonoid

BiModule(%, %)

MagmaWithUnit

CoercibleTo(OutputForm)

SemiRng

NonAssociativeRng