UniqueFactorizationDomain
catdef.spad line 1504
[edit on github]
A constructive unique factorization domain, i.e. where we can constructively factor members into a product of a finite number of irreducible elements.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- factor : % -> Factored(%)
factor(x)
returns the factorization of x
into irreducibles.
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
prime?(x)
tests if x
can never be written as the product of two non-units of the ring, i.e. x
is an irreducible element.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- squareFree : % -> Factored(%)
squareFree(x)
returns the square-free factorization of x
i.e. such that the factors are pairwise relatively prime and each has multiple prime factors.
- squareFreePart : % -> %
squareFreePart(x)
returns a product of prime factors of x
each taken with multiplicity one.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
NonAssociativeSemiRng
Algebra(%)
RightModule(%)
Monoid
GcdDomain
AbelianMonoid
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
LeftModule(%)
CommutativeStar
Module(%)
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
AbelianGroup
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
NonAssociativeRng
unitsKnown
Ring
SemiRng
EntireRing
BasicType
SemiRing