SparseUnivariatePolynomial(R)
poly.spad line 648
[edit on github]
This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as ?
in output. If it is necessary to specify the variable name, use type UnivariatePolynomial. The representation is sparse in the sense that only non-zero terms are represented.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, NonNegativeInteger)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has Ring
- from DifferentialRing
- D : (%, List(SingletonAsOrderedSet)) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- D : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has Ring
- from DifferentialRing
- D : (%, SingletonAsOrderedSet) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- D : (%, SingletonAsOrderedSet, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- coefficient : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, NonNegativeInteger) -> R
- from FreeModuleCategory(R, NonNegativeInteger)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, NonNegativeInteger)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has RetractableTo(Integer) or R has Ring
- from NonAssociativeRing
- coerce : SingletonAsOrderedSet -> % if R has SemiRing
- from CoercibleFrom(SingletonAsOrderedSet)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- composite : (%, %) -> Union(%, "failed") if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- composite : (Fraction(%), %) -> Union(Fraction(%), "failed") if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : NonNegativeInteger, c : R)) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- constructOrdered : List(Record(k : NonNegativeInteger, c : R)) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- content : (%, SingletonAsOrderedSet) -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- convert : % -> InputForm if R has ConvertibleTo(InputForm) and SingletonAsOrderedSet has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float)) and R has Ring and SingletonAsOrderedSet has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer)) and R has Ring and SingletonAsOrderedSet has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- degree : (%, List(SingletonAsOrderedSet)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree : % -> NonNegativeInteger
- from AbelianMonoidRing(R, NonNegativeInteger)
- degree : (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate : % -> % if R has Ring
- from DifferentialRing
- differentiate : (%, List(SingletonAsOrderedSet)) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- differentiate : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), %) -> % if R has Ring
- from UnivariatePolynomialCategory(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has Ring
- from DifferentialRing
- differentiate : (%, SingletonAsOrderedSet) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- differentiate : (%, SingletonAsOrderedSet, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(SingletonAsOrderedSet)
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- discriminant : (%, SingletonAsOrderedSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- discriminant : % -> R if R has CommutativeRing
- from UnivariatePolynomialCategory(R)
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
- from EuclideanDomain
- divideExponents : (%, NonNegativeInteger) -> Union(%, "failed")
- from UnivariatePolynomialCategory(R)
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, R) -> R
- from Eltable(R, R)
- elt : (Fraction(%), R) -> R if R has Field
- from UnivariatePolynomialCategory(R)
- elt : (%, Fraction(%)) -> Fraction(%) if R has IntegralDomain
- from Eltable(Fraction(%), Fraction(%))
- elt : (Fraction(%), Fraction(%)) -> Fraction(%) if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- euclideanSize : % -> NonNegativeInteger if R has Field
- from EuclideanDomain
- eval : (%, %, %) -> % if R has SemiRing
- from InnerEvalable(%, %)
- eval : (%, Equation(%)) -> % if R has SemiRing
- from Evalable(%)
- eval : (%, List(%), List(%)) -> % if R has SemiRing
- from InnerEvalable(%, %)
- eval : (%, List(Equation(%))) -> % if R has SemiRing
- from Evalable(%)
- eval : (%, List(SingletonAsOrderedSet), List(%)) -> %
- from InnerEvalable(SingletonAsOrderedSet, %)
- eval : (%, List(SingletonAsOrderedSet), List(R)) -> %
- from InnerEvalable(SingletonAsOrderedSet, R)
- eval : (%, SingletonAsOrderedSet, %) -> %
- from InnerEvalable(SingletonAsOrderedSet, %)
- eval : (%, SingletonAsOrderedSet, R) -> %
- from InnerEvalable(SingletonAsOrderedSet, R)
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
- from EuclideanDomain
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, NonNegativeInteger, R, %) -> % if R has Ring
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from GcdDomain
- ground : % -> R
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- init : () -> % if R has StepThrough
- from StepThrough
- integrate : % -> % if R has Algebra(Fraction(Integer))
- from UnivariatePolynomialCategory(R)
- isExpt : % -> Union(Record(var : SingletonAsOrderedSet, exponent : NonNegativeInteger), "failed") if R has SemiRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isTimes : % -> Union(List(%), "failed") if R has SemiRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- karatsubaDivide : (%, NonNegativeInteger) -> Record(quotient : %, remainder : %) if R has Ring
- from UnivariatePolynomialCategory(R)
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingSupport : % -> NonNegativeInteger
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingTerm : % -> Record(k : NonNegativeInteger, c : R)
- from IndexedProductCategory(R, NonNegativeInteger)
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- linearExtend : (Mapping(R, NonNegativeInteger), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, NonNegativeInteger)
- listOfTerms : % -> List(Record(k : NonNegativeInteger, c : R))
- from IndexedDirectProductCategory(R, NonNegativeInteger)
- mainVariable : % -> Union(SingletonAsOrderedSet, "failed")
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- makeSUP : % -> SparseUnivariatePolynomial(R)
- from UnivariatePolynomialCategory(R)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- mapExponents : (Mapping(NonNegativeInteger, NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- minimumDegree : (%, List(SingletonAsOrderedSet)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- minimumDegree : % -> NonNegativeInteger
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- minimumDegree : (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monicDivide : (%, %) -> Record(quotient : %, remainder : %) if R has Ring
- from UnivariatePolynomialCategory(R)
- monicDivide : (%, %, SingletonAsOrderedSet) -> Record(quotient : %, remainder : %) if R has Ring
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (R, NonNegativeInteger) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, NonNegativeInteger)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
- from EuclideanDomain
- multiplyExponents : (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory(R)
- multivariate : (SparseUnivariatePolynomial(%), SingletonAsOrderedSet) -> %
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multivariate : (SparseUnivariatePolynomial(R), SingletonAsOrderedSet) -> %
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- nextItem : % -> Union(%, "failed") if R has StepThrough
- from StepThrough
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, NonNegativeInteger)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : (%, %) -> NonNegativeInteger if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- outputForm : (%, OutputForm) -> OutputForm
outputForm(p, var)
converts the SparseUnivariatePolynomial p
to an output form (see OutputForm) printed as a polynomial in the output form var
.
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float) and SingletonAsOrderedSet has PatternMatchable(Float) and R has Ring
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer) and SingletonAsOrderedSet has PatternMatchable(Integer) and R has Ring
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, NonNegativeInteger, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%) if R has SemiRing
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart : (%, SingletonAsOrderedSet) -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
- from PrincipalIdealDomain
- pseudoDivide : (%, %) -> Record(coef : R, quotient : %, remainder : %) if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- pseudoQuotient : (%, %) -> % if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- pseudoRemainder : (%, %) -> % if R has Ring
- from UnivariatePolynomialCategory(R)
- quo : (%, %) -> % if R has Field
- from EuclideanDomain
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- rem : (%, %) -> % if R has Field
- from EuclideanDomain
- resultant : (%, %, SingletonAsOrderedSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- resultant : (%, %) -> R if R has CommutativeRing
- from UnivariatePolynomialCategory(R)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> SingletonAsOrderedSet if R has SemiRing
- from RetractableTo(SingletonAsOrderedSet)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(SingletonAsOrderedSet, "failed") if R has SemiRing
- from RetractableTo(SingletonAsOrderedSet)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- separate : (%, %) -> Record(primePart : %, commonPart : %) if R has GcdDomain
- from UnivariatePolynomialCategory(R)
- shiftLeft : (%, NonNegativeInteger) -> %
- from UnivariatePolynomialCategory(R)
- shiftRight : (%, NonNegativeInteger) -> % if R has Ring
- from UnivariatePolynomialCategory(R)
- sizeLess? : (%, %) -> Boolean if R has Field
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subResultantGcd : (%, %) -> % if R has IntegralDomain
- from UnivariatePolynomialCategory(R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(NonNegativeInteger)
- from FreeModuleCategory(R, NonNegativeInteger)
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, SingletonAsOrderedSet) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unmakeSUP : SparseUnivariatePolynomial(R) -> %
- from UnivariatePolynomialCategory(R)
- unvectorise : Vector(R) -> %
- from UnivariatePolynomialCategory(R)
- variables : % -> List(SingletonAsOrderedSet)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- vectorise : (%, NonNegativeInteger) -> Vector(R)
- from UnivariatePolynomialCategory(R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
AbelianProductCategory(R)
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
FreeModuleCategory(R, NonNegativeInteger)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
PatternMatchable(Float)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
NonAssociativeSemiRng
CharacteristicNonZero
RetractableTo(R)
noZeroDivisors
RetractableTo(Fraction(Integer))
CoercibleFrom(R)
Magma
InnerEvalable(%, %)
SemiGroup
GcdDomain
LeftModule(%)
IndexedProductCategory(R, NonNegativeInteger)
NonAssociativeRing
UniqueFactorizationDomain
LeftOreRing
NonAssociativeAlgebra(%)
PartialDifferentialRing(Symbol)
CharacteristicZero
Algebra(%)
Module(R)
CommutativeRing
DifferentialRing
BiModule(R, R)
RightModule(Fraction(Integer))
IntegralDomain
Eltable(Fraction(%), Fraction(%))
Eltable(%, %)
Eltable(R, R)
RightModule(R)
CoercibleFrom(SingletonAsOrderedSet)
FiniteAbelianMonoidRing(R, NonNegativeInteger)
DifferentialExtension(R)
CancellationAbelianMonoid
EuclideanDomain
Comparable
RetractableTo(Integer)
UnivariatePolynomialCategory(R)
LinearlyExplicitOver(R)
CommutativeStar
AbelianMonoid
MagmaWithUnit
RightModule(%)
VariablesCommuteWithCoefficients
Hashable
Evalable(%)
RetractableTo(SingletonAsOrderedSet)
PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
Module(%)
CoercibleTo(OutputForm)
additiveValuation
LinearlyExplicitOver(Integer)
ConvertibleTo(Pattern(Float))
SemiRng
Monoid
PolynomialFactorizationExplicit
InnerEvalable(SingletonAsOrderedSet, R)
IndexedDirectProductCategory(R, NonNegativeInteger)
NonAssociativeAlgebra(R)
Algebra(R)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
Canonical
AbelianSemiGroup
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
AbelianMonoidRing(R, NonNegativeInteger)
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
PatternMatchable(Integer)
BiModule(Fraction(Integer), Fraction(Integer))
InnerEvalable(SingletonAsOrderedSet, %)
SetCategory
PartialDifferentialRing(SingletonAsOrderedSet)
StepThrough
ConvertibleTo(Pattern(Integer))
AbelianGroup
LeftModule(Fraction(Integer))