NonAssociativeAlgebra(R)

naalgc.spad line 195 [edit on github]

NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms r*(a*b) = (r*a)*b = a*(r*b)

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
latex : % -> String
from SetCategory
leftPower : (%, PositiveInteger) -> %
from Magma
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %

plenaryPower(a, n) is recursively defined to be plenaryPower(a, n-1)*plenaryPower(a, n-1) for n>1 and a for n=1.

rightPower : (%, PositiveInteger) -> %
from Magma
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CancellationAbelianMonoid

SetCategory

NonAssociativeRng

CoercibleTo(OutputForm)

AbelianMonoid

RightModule(R)

AbelianSemiGroup

BiModule(R, R)

Module(R)

LeftModule(R)

Magma

NonAssociativeSemiRng

BasicType

AbelianGroup