NonAssociativeAlgebra(R)
naalgc.spad line 195
[edit on github]
NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms r*
(a*b) = (r*a)*b
= a*(r*b
)
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- latex : % -> String
- from SetCategory
- leftPower : (%, PositiveInteger) -> %
- from Magma
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
plenaryPower(a, n)
is recursively defined to be plenaryPower(a, n-1)*plenaryPower(a, n-1)
for n>1
and a
for n=1
.
- rightPower : (%, PositiveInteger) -> %
- from Magma
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CancellationAbelianMonoid
SetCategory
NonAssociativeRng
CoercibleTo(OutputForm)
AbelianMonoid
RightModule(R)
AbelianSemiGroup
BiModule(R, R)
Module(R)
LeftModule(R)
Magma
NonAssociativeSemiRng
BasicType
AbelianGroup