AbelianMonoidRing(R, E)
polycat.spad line 1
[edit on github]
Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficients and the e_i, elements of the ordered abelian monoid, are thought of as exponents or monomials. The monomials commute with each other, but in general do not commute with the coefficients (which themselves may or may not be commutative). See FiniteAbelianMonoidRing for the case of finite support. A useful common model for polynomials and power series. Conceptually at least, only the non-zero terms are ever operated on.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
p/c
divides p
by the coefficient c
.
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, E) -> R
coefficient(p, e)
extracts the coefficient of the monomial with exponent e
from polynomial p
, or returns zero if exponent is not present.
- coerce : % -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from Algebra(%)
- coerce : R -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has Ring
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- degree : % -> E
degree(p)
returns the maximum of the exponents of the terms of p
.
- exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from EntireRing
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has Algebra(Fraction(Integer)) or R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from NonAssociativeAlgebra(%)
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(R, E)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from EntireRing
- unitCanonical : % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
RightModule(%)
Monoid
Algebra(%)
Algebra(R)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(Fraction(Integer))
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
RightModule(Fraction(Integer))
CommutativeStar
LeftModule(%)
LeftModule(R)
Module(%)
SetCategory
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
SemiGroup
TwoSidedRecip
Magma
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
IndexedProductCategory(R, E)
AbelianProductCategory(R)
Module(R)
RightModule(R)
BiModule(Fraction(Integer), Fraction(Integer))
NonAssociativeRng
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing