Fraction(S)
fraction.spad line 251
[edit on github]
Fraction takes an IntegralDomain S
and produces the domain of Fractions with numerators and denominators from S
. If S
is also a GcdDomain, then gcd
's
between numerator and denominator will be cancelled during all operations.
- * : (%, %) -> %
- from Magma
- * : (%, S) -> %
- from RightModule(S)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if S has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (S, %) -> %
- from LeftModule(S)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- / : (S, S) -> %
- from QuotientFieldCategory(S)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- <= : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- >= : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- D : % -> % if S has DifferentialRing
- from DifferentialRing
- D : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(S, S)) -> %
- from DifferentialExtension(S)
- D : (%, Mapping(S, S), NonNegativeInteger) -> %
- from DifferentialExtension(S)
- D : (%, NonNegativeInteger) -> % if S has DifferentialRing
- from DifferentialRing
- D : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- OMwrite : % -> String if S has OpenMath and S has IntegerNumberSystem
- from OpenMath
- OMwrite : (%, Boolean) -> String if S has OpenMath and S has IntegerNumberSystem
- from OpenMath
- OMwrite : (OpenMathDevice, %) -> Void if S has OpenMath and S has IntegerNumberSystem
- from OpenMath
- OMwrite : (OpenMathDevice, %, Boolean) -> Void if S has OpenMath and S has IntegerNumberSystem
- from OpenMath
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> % if S has OrderedIntegralDomain
- from OrderedRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- ceiling : % -> S if S has IntegerNumberSystem
- from QuotientFieldCategory(S)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if S has CharacteristicNonZero or % has CharacteristicNonZero and S has PolynomialFactorizationExplicit
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : S -> %
- from CoercibleFrom(S)
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : Symbol -> % if S has RetractableTo(Symbol)
- from CoercibleFrom(Symbol)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and S has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- convert : % -> DoubleFloat if S has RealConstant
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float if S has RealConstant
- from ConvertibleTo(Float)
- convert : % -> InputForm if S has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if S has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if S has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- denom : % -> S
- from QuotientFieldCategory(S)
- denominator : % -> %
- from QuotientFieldCategory(S)
- differentiate : % -> % if S has DifferentialRing
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(S, S)) -> %
- from DifferentialExtension(S)
- differentiate : (%, Mapping(S, S), NonNegativeInteger) -> %
- from DifferentialExtension(S)
- differentiate : (%, NonNegativeInteger) -> % if S has DifferentialRing
- from DifferentialRing
- differentiate : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- elt : (%, S) -> % if S has Eltable(S, S)
- from Eltable(S, %)
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- eval : (%, S, S) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, Equation(S)) -> % if S has Evalable(S)
- from Evalable(S)
- eval : (%, List(S), List(S)) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, List(Equation(S))) -> % if S has Evalable(S)
- from Evalable(S)
- eval : (%, List(Symbol), List(S)) -> % if S has InnerEvalable(Symbol, S)
- from InnerEvalable(Symbol, S)
- eval : (%, Symbol, S) -> % if S has InnerEvalable(Symbol, S)
- from InnerEvalable(Symbol, S)
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorFraction : % -> Fraction(Factored(S)) if S has UniqueFactorizationDomain
factorFraction(r)
factors the numerator and the denominator of the fraction r
.
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if S has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if S has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- floor : % -> S if S has IntegerNumberSystem
- from QuotientFieldCategory(S)
- fractionPart : % -> % if S has EuclideanDomain
- from QuotientFieldCategory(S)
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from PolynomialFactorizationExplicit
- hash : % -> SingleInteger if S has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if S has Hashable
- from Hashable
- init : () -> % if S has StepThrough
- from StepThrough
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- map : (Mapping(S, S), %) -> %
- from FullyEvalableOver(S)
- max : (%, %) -> % if S has OrderedSet
- from OrderedSet
- min : (%, %) -> % if S has OrderedSet
- from OrderedSet
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean if S has OrderedIntegralDomain
- from OrderedRing
- nextItem : % -> Union(%, "failed") if S has StepThrough
- from StepThrough
- numer : % -> S
- from QuotientFieldCategory(S)
- numerator : % -> %
- from QuotientFieldCategory(S)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if S has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if S has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean if S has OrderedIntegralDomain
- from OrderedRing
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(S)
- from LinearlyExplicitOver(S)
- reducedSystem : Matrix(%) -> Matrix(Integer) if S has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(S), vec : Vector(S))
- from LinearlyExplicitOver(S)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if S has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> S
- from RetractableTo(S)
- retract : % -> Fraction(Integer) if S has RetractableTo(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> Symbol if S has RetractableTo(Symbol)
- from RetractableTo(Symbol)
- retractIfCan : % -> Union(S, "failed")
- from RetractableTo(S)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if S has RetractableTo(Integer)
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Symbol, "failed") if S has RetractableTo(Symbol)
- from RetractableTo(Symbol)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer if S has OrderedIntegralDomain
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if S has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if S has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if S has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- wholePart : % -> S if S has EuclideanDomain
- from QuotientFieldCategory(S)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
LinearlyExplicitOver(S)
Module(Fraction(Integer))
ConvertibleTo(Float)
PrincipalIdealDomain
PartialOrder
NonAssociativeSemiRing
BiModule(%, %)
RetractableTo(Symbol)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
OrderedAbelianGroup
SemiRing
EntireRing
PatternMatchable(Float)
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
DifferentialExtension(S)
unitsKnown
InnerEvalable(Symbol, S)
NonAssociativeAlgebra(S)
SetCategory
Patternable(S)
noZeroDivisors
RetractableTo(Fraction(Integer))
FullyPatternMatchable(S)
CoercibleFrom(S)
SemiGroup
RightModule(Fraction(Integer))
Magma
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
UniqueFactorizationDomain
Eltable(S, %)
NonAssociativeAlgebra(%)
PartialDifferentialRing(Symbol)
CharacteristicZero
InnerEvalable(S, S)
RightModule(S)
OrderedIntegralDomain
Ring
CoercibleFrom(Fraction(Integer))
Algebra(%)
DifferentialRing
OrderedAbelianMonoid
DivisionRing
CommutativeRing
OpenMath
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Module(S)
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedRing
CommutativeStar
AbelianMonoid
MagmaWithUnit
Comparable
CoercibleFrom(Symbol)
RightModule(%)
Hashable
RealConstant
RetractableTo(S)
LeftModule(S)
ConvertibleTo(DoubleFloat)
QuotientFieldCategory(S)
OrderedAbelianSemiGroup
Module(%)
LinearlyExplicitOver(Integer)
CoercibleTo(OutputForm)
ConvertibleTo(Pattern(Integer))
SemiRng
Monoid
PolynomialFactorizationExplicit
LeftOreRing
OrderedSet
StepThrough
Algebra(Fraction(Integer))
Algebra(S)
BiModule(S, S)
BasicType
Evalable(S)
RightModule(Integer)
LeftModule(Fraction(Integer))
Canonical
AbelianSemiGroup
ConvertibleTo(Pattern(Float))
FullyLinearlyExplicitOver(S)
FullyEvalableOver(S)
NonAssociativeRng
PatternMatchable(Integer)
BiModule(Fraction(Integer), Fraction(Integer))
AbelianGroup