OrderedIntegralDomain
catdef.spad line 1021
[edit on github]
The category of ordered commutative integral domains, where ordering and the arithmetic operations are compatible.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- negative? : % -> Boolean
- from OrderedRing
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean
- from OrderedRing
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer
- from OrderedRing
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Comparable
CommutativeStar
noZeroDivisors
OrderedAbelianSemiGroup
RightModule(%)
Monoid
AbelianMonoid
Algebra(%)
CancellationAbelianMonoid
OrderedSet
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(%)
Module(%)
SetCategory
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
OrderedAbelianMonoid
PartialOrder
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
OrderedCancellationAbelianMonoid
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
OrderedAbelianGroup
OrderedRing
NonAssociativeRng
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing