OrderedIntegralDomain

catdef.spad line 1021 [edit on github]

The category of ordered commutative integral domains, where ordering and the arithmetic operations are compatible.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %
from OrderedRing
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
exquo : (%, %) -> Union(%, "failed")
from EntireRing
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
negative? : % -> Boolean
from OrderedRing
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from OrderedRing
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sign : % -> Integer
from OrderedRing
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Comparable

CommutativeStar

noZeroDivisors

OrderedAbelianSemiGroup

RightModule(%)

Monoid

AbelianMonoid

Algebra(%)

CancellationAbelianMonoid

OrderedSet

MagmaWithUnit

NonAssociativeRing

AbelianGroup

LeftModule(%)

Module(%)

SetCategory

Rng

CommutativeRing

TwoSidedRecip

Magma

SemiGroup

OrderedAbelianMonoid

PartialOrder

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

OrderedCancellationAbelianMonoid

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

OrderedAbelianGroup

OrderedRing

NonAssociativeRng

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing