PolynomialFactorizationExplicit
catdef.spad line 1228
[edit on github]
This is the category of domains that know "enough" about themselves in order to factor univariate polynomials over their fraction field.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero
charthRoot(r)
returns the p
-
th root of r
, or "failed" if none exists in the domain.
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero
conditionP(m)
returns a vector of elements, not all zero, whose p
-
th powers (p
is the characteristic of the domain) are a solution of the homogeneous linear system represented by m
, or "failed" is there is no such vector.
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
factorPolynomial(p)
returns the factorization into irreducibles of the univariate polynomial p
.
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
factorSquareFreePolynomial(p)
factors the univariate polynomial p
into irreducibles where p
is known to be square free and primitive with respect to its main variable.
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
gcdPolynomial(p, q)
returns the gcd
of the univariate polynomials p
qnd
q
.
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed")
solveLinearPolynomialEquation([f1, ..., fn], g)
(where the fi
are relatively prime to each other) returns a list of ai
such that g/prod fi
= sum ai/fi
or returns "failed" if no such list of ai
's
exists.
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
squareFreePolynomial(p)
returns the square-free factorization of the univariate polynomial p
.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
Algebra(%)
RightModule(%)
Monoid
GcdDomain
EntireRing
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(%)
CommutativeStar
Module(%)
SetCategory
LeftOreRing
Rng
CommutativeRing
TwoSidedRecip
Magma
UniqueFactorizationDomain
SemiGroup
BiModule(%, %)
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
NonAssociativeRng
unitsKnown
Ring
SemiRng
AbelianMonoid
NonAssociativeSemiRng
BasicType
SemiRing