GcdDomain
catdef.spad line 689
[edit on github]
This category describes domains where gcd
can be computed but where there is no guarantee of the existence of factor operation for factorization into irreducibles. However, if such a factor operation exist, factorization will be unique up to order and units.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- gcd : (%, %) -> %
gcd(x, y)
returns the greatest common divisor of x
and y
.
- gcd : List(%) -> %
gcd(l)
returns the common gcd
of the elements in the list l
.
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
gcdPolynomial(p, q)
returns the greatest common divisor (gcd
) of univariate polynomials over the domain
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
lcm(x, y)
returns the least common multiple of x
and y
.
- lcm : List(%) -> %
lcm(l)
returns the least common multiple of the elements of the list l
.
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
RightModule(%)
Monoid
AbelianMonoid
Algebra(%)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(%)
CommutativeStar
Module(%)
SetCategory
LeftOreRing
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
NonAssociativeRng
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
BasicType
SemiRing