GcdDomain

catdef.spad line 689 [edit on github]

This category describes domains where gcd can be computed but where there is no guarantee of the existence of factor operation for factorization into irreducibles. However, if such a factor operation exist, factorization will be unique up to order and units.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
exquo : (%, %) -> Union(%, "failed")
from EntireRing
gcd : (%, %) -> %

gcd(x, y) returns the greatest common divisor of x and y.

gcd : List(%) -> %

gcd(l) returns the common gcd of the elements in the list l.

gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)

gcdPolynomial(p, q) returns the greatest common divisor (gcd) of univariate polynomials over the domain

latex : % -> String
from SetCategory
lcm : (%, %) -> %

lcm(x, y) returns the least common multiple of x and y.

lcm : List(%) -> %

lcm(l) returns the least common multiple of the elements of the list l.

lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

noZeroDivisors

RightModule(%)

Monoid

AbelianMonoid

Algebra(%)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

LeftModule(%)

CommutativeStar

Module(%)

SetCategory

LeftOreRing

Rng

CommutativeRing

TwoSidedRecip

Magma

SemiGroup

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

NonAssociativeRng

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

BasicType

SemiRing