FullyLinearlyExplicitOver(R)

catdef.spad line 661 [edit on github]

S is FullyLinearlyExplicitOver R means that S is a LinearlyExplicitOver R and, in addition, if R is a LinearlyExplicitOver Integer, then so is S

* : (%, R) -> %
from RightModule(R)
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
latex : % -> String
from SetCategory
opposite? : (%, %) -> Boolean
from AbelianMonoid
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CancellationAbelianMonoid

LinearlyExplicitOver(Integer)

CoercibleTo(OutputForm)

AbelianMonoid

RightModule(R)

AbelianSemiGroup

SetCategory

BasicType

RightModule(Integer)

LinearlyExplicitOver(R)

AbelianGroup