FullyLinearlyExplicitOver(R)
catdef.spad line 661
[edit on github]
S
is FullyLinearlyExplicitOver R means that S
is a LinearlyExplicitOver R and, in addition, if R
is a LinearlyExplicitOver Integer, then so is S
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- latex : % -> String
- from SetCategory
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CancellationAbelianMonoid
LinearlyExplicitOver(Integer)
CoercibleTo(OutputForm)
AbelianMonoid
RightModule(R)
AbelianSemiGroup
SetCategory
BasicType
RightModule(Integer)
LinearlyExplicitOver(R)
AbelianGroup