MaybeSkewPolynomialCategory(R, E, VarSet)
polycat.spad line 165
[edit on github]
The category for general multi-variate possibly skew polynomials over a ring R
, in variables from VarSet, with exponents from the OrderedAbelianMonoidSup.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E)
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, VarSet, NonNegativeInteger) -> %
coefficient(p, v, n)
views the polynomial p
as a univariate polynomial in v
and returns the coefficient of the v^n
term.
- coefficient : (%, List(VarSet), List(NonNegativeInteger)) -> %
coefficient(p, lv, ln)
views the polynomial p
as a polynomial in the variables of lv
and returns the coefficient of the term lv^ln
, i.e. prod(lv_i ^ ln_i)
.
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has RetractableTo(Integer) or R has Ring
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- degree : % -> E
- from AbelianMonoidRing(R, E)
- degree : (%, List(VarSet)) -> List(NonNegativeInteger)
degree(p, lv)
gives the list of degrees of polynomial p
with respect to each of the variables in the list lv
.
- degree : (%, VarSet) -> NonNegativeInteger
degree(p, v)
gives the degree of polynomial p
with respect to the variable v
.
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, E)
- fmecg : (%, E, R, %) -> % if R has Ring
- from FiniteAbelianMonoidRing(R, E)
- ground : % -> R
- from FiniteAbelianMonoidRing(R, E)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, E)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- mainVariable : % -> Union(VarSet, "failed")
mainVariable(p)
returns the biggest variable which actually occurs in the polynomial p
, or "failed" if no variables are present. fails precisely if polynomial satisfies ground?
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : % -> E
- from FiniteAbelianMonoidRing(R, E)
- monomial : (%, VarSet, NonNegativeInteger) -> %
monomial(a, x, n)
creates the monomial a*x^n
where a
is a polynomial, x
is a variable and n
is a nonnegative integer.
- monomial : (%, List(VarSet), List(NonNegativeInteger)) -> %
monomial(a, [v1..vn], [e1..en])
returns a*prod(vi^ei)
.
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
monomials(p)
returns the list of non-zero monomials of polynomial p
, i.e. monomials(sum(a_(i) X^(i))) = [a_(1) X^(1), ..., a_(n) X^(n)]
.
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has Algebra(Fraction(Integer)) or R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- primitiveMonomials : % -> List(%) if R has SemiRing
primitiveMonomials(p)
gives the list of monomials of the polynomial p
with their coefficients removed. Note: primitiveMonomials(sum(a_(i) X^(i))) = [X^(1), ..., X^(n)]
.
- primitivePart : % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, E)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- totalDegree : % -> NonNegativeInteger
totalDegree(p)
returns the largest sum over all monomials of all exponents of a monomial.
- totalDegree : (%, List(VarSet)) -> NonNegativeInteger
totalDegree(p, lv)
returns the maximum sum (over all monomials of polynomial p
) of the variables in the list lv
.
- totalDegreeSorted : (%, List(VarSet)) -> NonNegativeInteger
totalDegreeSorted(p, lv)
returns the maximum sum (over all monomials of polynomial p
) of the degree in variables in the list lv
. lv
is assumed to be sorted in decreasing order.
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- variables : % -> List(VarSet)
variables(p)
returns the list of those variables actually appearing in the polynomial p
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
Comparable
LeftModule(Fraction(Integer))
CoercibleFrom(R)
RightModule(%)
Monoid
NonAssociativeAlgebra(%)
Algebra(%)
Algebra(R)
AbelianMonoid
BiModule(R, R)
FiniteAbelianMonoidRing(R, E)
NonAssociativeAlgebra(Fraction(Integer))
FreeModuleCategory(R, E)
MagmaWithUnit
AbelianGroup
RightModule(Fraction(Integer))
RetractableTo(Integer)
unitsKnown
LinearlyExplicitOver(Integer)
AbelianMonoidRing(R, E)
Module(R)
LeftModule(%)
LeftModule(R)
canonicalUnitNormal
noZeroDivisors
CommutativeStar
Module(%)
SetCategory
Ring
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
SemiRing
Magma
NonAssociativeAlgebra(R)
CoercibleFrom(Fraction(Integer))
NonAssociativeSemiRng
SemiGroup
CoercibleFrom(Integer)
CoercibleTo(OutputForm)
AbelianSemiGroup
FullyLinearlyExplicitOver(R)
RetractableTo(Fraction(Integer))
NonAssociativeSemiRing
CancellationAbelianMonoid
IndexedProductCategory(R, E)
IndexedDirectProductCategory(R, E)
AbelianProductCategory(R)
RightModule(R)
BiModule(Fraction(Integer), Fraction(Integer))
CharacteristicZero
RetractableTo(R)
RightModule(Integer)
NonAssociativeRng
LinearlyExplicitOver(R)
NonAssociativeRing
SemiRng
EntireRing
BasicType
BiModule(%, %)
FullyRetractableTo(R)
TwoSidedRecip