FiniteAbelianMonoidRing(R, E)
polycat.spad line 54
[edit on github]
This category is similar to AbelianMonoidRing, except that the sum is assumed to be finite. It is a useful model for polynomials, but is somewhat more general.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
binomThmExpt(p, q, n)
returns (p+q)^n
by means of the binomial theorem trick.
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has Ring or R has RetractableTo(Integer)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : % -> R if R has GcdDomain
content(p)
gives the gcd
of the coefficients of polynomial p
.
- degree : % -> E
- from AbelianMonoidRing(R, E)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
exquo(p,r)
returns the exact quotient of polynomial p
by r
, or "failed" if none exists.
- fmecg : (%, E, R, %) -> % if R has Ring
fmecg(p1, e, r, p2)
returns p1 - monomial(r, e) * p2
.
- ground : % -> R
ground(p)
retracts polynomial p
to the coefficient ring.
- ground? : % -> Boolean
ground?(p)
tests if polynomial p
is a member of the coefficient ring.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
mapExponents(fn, u)
maps function fn
onto the exponents of the non-zero monomials of polynomial u
.
- minimumDegree : % -> E
minimumDegree(p)
gives the least exponent of a non-zero term of polynomial p
. Error: if applied to 0.
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from FreeModuleCategory(R, E)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has Algebra(Fraction(Integer)) or R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
pomopo!(p1, r, e, p2)
returns p1 + monomial(r, e) * p2
and may use p1
as workspace. The constant r
is assumed to be nonzero.
- primitivePart : % -> % if R has GcdDomain
primitivePart(p)
returns the unit normalized form of polynomial p
divided by the content of p
.
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(R, E)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Comparable
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
CoercibleFrom(R)
RightModule(%)
Monoid
Algebra(R)
AbelianMonoid
Algebra(%)
BiModule(R, R)
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
RetractableTo(Fraction(Integer))
AbelianGroup
RightModule(Fraction(Integer))
CoercibleFrom(Fraction(Integer))
RetractableTo(Integer)
CommutativeStar
AbelianMonoidRing(R, E)
LeftModule(%)
LeftModule(R)
IndexedProductCategory(R, E)
Module(%)
Algebra(Fraction(Integer))
SetCategory
IndexedDirectProductCategory(R, E)
NonAssociativeAlgebra(R)
Rng
FreeModuleCategory(R, E)
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
NonAssociativeRing
SemiGroup
BiModule(%, %)
CoercibleFrom(Integer)
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
AbelianProductCategory(R)
Module(R)
RightModule(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(R)
NonAssociativeRng
unitsKnown
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing
FullyRetractableTo(R)