IndexedDirectProductCategory(A, S)
indexedp.spad line 81
[edit on github]
This category represents the direct product of some set with respect to an ordered indexing set. The ordered set S
is considered as the ``basis elements''
and the elements from A
as ``coefficients''
.
- * : (Integer, %) -> % if A has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> % if A has AbelianMonoid
- from AbelianMonoid
- * : (PositiveInteger, %) -> % if A has AbelianMonoid
- from AbelianSemiGroup
- + : (%, %) -> % if A has AbelianMonoid
- from AbelianSemiGroup
- - : % -> % if A has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if A has AbelianGroup
- from AbelianGroup
- 0 : () -> % if A has AbelianMonoid
- from AbelianMonoid
- = : (%, %) -> Boolean if A has AbelianMonoid or A has Comparable and S has Comparable
- from BasicType
- coerce : % -> OutputForm if A has AbelianMonoid or A has Comparable and S has Comparable
- from CoercibleTo(OutputForm)
- construct : List(Record(k : S, c : A)) -> %
- from IndexedProductCategory(A, S)
- constructOrdered : List(Record(k : S, c : A)) -> % if S has Comparable
- from IndexedProductCategory(A, S)
- latex : % -> String if A has AbelianMonoid or A has Comparable and S has Comparable
- from SetCategory
- leadingCoefficient : % -> A if S has Comparable
- from IndexedProductCategory(A, S)
- leadingMonomial : % -> % if S has Comparable
- from IndexedProductCategory(A, S)
- leadingSupport : % -> S if S has Comparable
- from IndexedProductCategory(A, S)
- leadingTerm : % -> Record(k : S, c : A) if S has Comparable
- from IndexedProductCategory(A, S)
- listOfTerms : % -> List(Record(k : S, c : A))
listOfTerms(x)
returns a list lt
of terms with type Record(k: S, c: R)
such that x
equals construct(lt)
. If S has Comparable
than x
equals constructOrdered(lt)
.
- map : (Mapping(A, A), %) -> %
- from IndexedProductCategory(A, S)
- monomial : (A, S) -> %
- from IndexedProductCategory(A, S)
- monomial? : % -> Boolean
- from IndexedProductCategory(A, S)
- numberOfMonomials : % -> NonNegativeInteger
numberOfMonomials(x)
returns the number of monomials of x
.
- opposite? : (%, %) -> Boolean if A has AbelianMonoid
- from AbelianMonoid
- reductum : % -> % if S has Comparable
- from IndexedProductCategory(A, S)
- sample : () -> % if A has AbelianMonoid
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if A has Comparable and S has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed") if A has CancellationAbelianMonoid
- from CancellationAbelianMonoid
- zero? : % -> Boolean if A has AbelianMonoid
- from AbelianMonoid
- ~= : (%, %) -> Boolean if A has AbelianMonoid or A has Comparable and S has Comparable
- from BasicType
BasicType
CoercibleTo(OutputForm)
AbelianMonoid
IndexedProductCategory(A, S)
Comparable
AbelianProductCategory(A)
SetCategory
CancellationAbelianMonoid
AbelianGroup
AbelianSemiGroup