FiniteRankAlgebra(R, UP)
algcat.spad line 70
[edit on github]
A FiniteRankAlgebra is an algebra over a commutative ring R
which is a free R
-module of finite rank.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> UP
characteristicPolynomial(a)
returns the characteristic polynomial of the regular representation of a
with respect to any basis.
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
coordinates([v1, ..., vm], basis)
returns the coordinates of the vi
's
with to the basis basis
. The coordinates of vi
are contained in the i
th row of the matrix returned by this function.
- coordinates : (%, Vector(%)) -> Vector(R)
coordinates(a, basis)
returns the coordinates of a
with respect to the basis basis
.
- discriminant : Vector(%) -> R
discriminant([v1, .., vn])
returns determinant(traceMatrix([v1, .., vn]))
.
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- minimalPolynomial : % -> UP if R has Field
minimalPolynomial(a)
returns the minimal polynomial of a
.
- norm : % -> R
norm(a)
returns the determinant of the regular representation of a
with respect to any basis.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- rank : () -> PositiveInteger
rank()
returns the rank of the algebra.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
regularRepresentation(a, basis)
returns the matrix m
of the linear map defined by left multiplication by a
with respect to the basis basis
. That is for all x
we have coordinates(a*x, basis) = m*coordinates(x, basis)
.
- represents : (Vector(R), Vector(%)) -> %
represents([a1, .., an], [v1, .., vn])
returns a1*v1 + ... + an*vn
.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- trace : % -> R
trace(a)
returns the trace of the regular representation of a
with respect to any basis.
- traceMatrix : Vector(%) -> Matrix(R)
traceMatrix([v1, .., vn])
is the n
-by-n
matrix ( Tr
(vi
* vj
) )
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Algebra(R)
RightModule(%)
Monoid
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(%)
LeftModule(R)
SetCategory
Rng
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
Module(R)
RightModule(R)
NonAssociativeRng
Ring
SemiRng
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing