ComplexCategory(R)
gaussian.spad line 1
[edit on github]
This category represents the extension of a ring by a square root of -1
.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if R has Field
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> % if R has RealNumberSystem
abs(x)
returns the absolute value of x
= sqrt(norm(x
)).
- acos : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- acot : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- argument : % -> R if R has TranscendentalFunctionCategory
argument(x)
returns the angle made by (1, 0) and x
.
- asec : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- asech : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- asin : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if R has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if R has TranscendentalFunctionCategory
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if R has TranscendentalFunctionCategory
- from ArcHyperbolicFunctionCategory
- basis : () -> Vector(%)
- from FramedModule(R)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- charthRoot : % -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has EuclideanDomain
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Field
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complex : (R, R) -> %
complex(x, y)
constructs x
+ %i*y.
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if R has FiniteFieldCategory or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has EuclideanDomain
- from PolynomialFactorizationExplicit
- conjugate : % -> %
conjugate(x + %i y)
returns x
- %i
y
.
- convert : SparseUnivariatePolynomial(R) -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> Complex(DoubleFloat) if R has RealConstant
- from ConvertibleTo(Complex(DoubleFloat))
- convert : % -> Complex(Float) if R has RealConstant
- from ConvertibleTo(Complex(Float))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- convert : % -> SparseUnivariatePolynomial(R)
- from ConvertibleTo(SparseUnivariatePolynomial(R))
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- cos : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- cosh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- cot : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- coth : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- createPrimitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- csc : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- csch : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- definingPolynomial : () -> SparseUnivariatePolynomial(R)
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- derivationCoordinates : (Vector(%), Mapping(R, R)) -> Matrix(R) if R has Field
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- differentiate : % -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- discreteLog : % -> NonNegativeInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- discriminant : () -> R
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- discriminant : Vector(%) -> R
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- elt : (%, R) -> % if R has Eltable(R, R)
- from Eltable(R, %)
- enumerate : () -> List(%) if R has Finite
- from Finite
- euclideanSize : % -> NonNegativeInteger if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(Symbol), List(R)) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- eval : (%, Symbol, R) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- exp : % -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has IntegerNumberSystem or R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has IntegralDomain
exquo(x, r)
returns the exact quotient of x
by r
, or "failed" if r
does not divide x
exactly.
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- factor : % -> Factored(%) if R has IntegerNumberSystem or R has Field or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger)) if R has FiniteFieldCategory
- from FiniteFieldCategory
- gcd : (%, %) -> % if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from GcdDomain
- gcd : List(%) -> % if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- generator : () -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- imag : % -> R
imag(x)
returns imaginary part of x
.
- imaginary : () -> %
imaginary()
= sqrt(-1
) = %i
.
- index : PositiveInteger -> % if R has Finite
- from Finite
- init : () -> % if R has FiniteFieldCategory
- from StepThrough
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from GcdDomain
- lcm : List(%) -> % if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field or R has IntegerNumberSystem or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lift : % -> SparseUnivariatePolynomial(R)
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- log : % -> % if R has TranscendentalFunctionCategory
- from ElementaryFunctionCategory
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from FullyEvalableOver(R)
- minimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has Field
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- nextItem : % -> Union(%, "failed") if R has FiniteFieldCategory
- from StepThrough
- norm : % -> R
norm(x)
returns x
* conjugate(x
)
- nthRoot : (%, Integer) -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger) if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- order : % -> PositiveInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- pi : () -> % if R has TranscendentalFunctionCategory
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- polarCoordinates : % -> Record(r : R, phi : R) if R has RealNumberSystem and R has TranscendentalFunctionCategory
polarCoordinates(x)
returns (r
, phi) such that x
= r
* exp(%i
* phi).
- prime? : % -> Boolean if R has IntegerNumberSystem or R has Field or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primeFrobenius : % -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primitive? : % -> Boolean if R has FiniteFieldCategory
- from FiniteFieldCategory
- primitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has IntegerNumberSystem or R has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- rational : % -> Fraction(Integer) if R has IntegerNumberSystem
rational(x)
returns x
as a rational number. Error: if x
is not a rational number.
- rational? : % -> Boolean if R has IntegerNumberSystem
rational?(x)
tests if x
is a rational number.
- rationalIfCan : % -> Union(Fraction(Integer), "failed") if R has IntegerNumberSystem
rationalIfCan(x)
returns x
as a rational number, or "failed" if x
is not a rational number.
- real : % -> R
real(x)
returns real part of x
.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : SparseUnivariatePolynomial(R) -> %
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- reduce : Fraction(SparseUnivariatePolynomial(R)) -> Union(%, "failed") if R has Field
- from MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- regularRepresentation : % -> Matrix(R)
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- rem : (%, %) -> % if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- representationType : () -> Union("prime", "polynomial", "normal", "cyclic") if R has FiniteFieldCategory
- from FiniteFieldCategory
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- sech : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- sin : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- sinh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- sizeLess? : (%, %) -> Boolean if R has IntegerNumberSystem or R has Field
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has FiniteFieldCategory or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- sqrt : % -> % if R has RadicalCategory and R has TranscendentalFunctionCategory
- from RadicalCategory
- squareFree : % -> Factored(%) if R has IntegerNumberSystem or R has Field or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has IntegerNumberSystem or R has Field or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory or R has EuclideanDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger) if R has FiniteFieldCategory
- from FiniteFieldCategory
- tan : % -> % if R has TranscendentalFunctionCategory
- from TrigonometricFunctionCategory
- tanh : % -> % if R has TranscendentalFunctionCategory
- from HyperbolicFunctionCategory
- trace : % -> R
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- traceMatrix : () -> Matrix(R)
- from FramedAlgebra(R, SparseUnivariatePolynomial(R))
- traceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
- unit? : % -> Boolean if R has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if R has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Algebra(Fraction(Integer))
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
Evalable(R)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
BiModule(R, R)
ArcTrigonometricFunctionCategory
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
TranscendentalFunctionCategory
SemiRing
EntireRing
FiniteRankAlgebra(R, SparseUnivariatePolynomial(R))
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
Eltable(R, %)
FullyLinearlyExplicitOver(R)
Algebra(R)
PatternMatchable(Float)
LinearlyExplicitOver(Integer)
noZeroDivisors
RetractableTo(Fraction(Integer))
CoercibleFrom(R)
ConvertibleTo(SparseUnivariatePolynomial(R))
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
RightModule(R)
GcdDomain
LeftModule(%)
NonAssociativeRing
ArcHyperbolicFunctionCategory
Magma
PartialDifferentialRing(Symbol)
CharacteristicZero
Module(R)
BiModule(%, %)
CoercibleFrom(Fraction(Integer))
Algebra(%)
unitsKnown
HyperbolicFunctionCategory
DifferentialRing
FieldOfPrimeCharacteristic
RadicalCategory
DivisionRing
arbitraryPrecision
CommutativeRing
InnerEvalable(R, R)
LeftOreRing
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Comparable
RetractableTo(Integer)
FramedAlgebra(R, SparseUnivariatePolynomial(R))
CommutativeStar
AbelianMonoid
ElementaryFunctionCategory
MagmaWithUnit
NonAssociativeSemiRng
RightModule(%)
Hashable
StepThrough
Module(%)
ConvertibleTo(Pattern(Integer))
CoercibleTo(OutputForm)
DifferentialExtension(R)
FullyEvalableOver(R)
InnerEvalable(Symbol, R)
ConvertibleTo(Pattern(Float))
SemiRng
Patternable(R)
Monoid
PolynomialFactorizationExplicit
FiniteFieldCategory
NonAssociativeAlgebra(R)
NonAssociativeAlgebra(%)
FramedModule(R)
Finite
ConvertibleTo(Complex(DoubleFloat))
BasicType
Ring
ConvertibleTo(Complex(Float))
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
IntegralDomain
SetCategory
MonogenicAlgebra(R, SparseUnivariatePolynomial(R))
multiplicativeValuation
TrigonometricFunctionCategory
LinearlyExplicitOver(R)
NonAssociativeRng
PatternMatchable(Integer)
BiModule(Fraction(Integer), Fraction(Integer))
FullyPatternMatchable(R)
RetractableTo(R)
AbelianGroup