MonogenicAlgebra(R, UP)
algcat.spad line 217
[edit on github]
A MonogenicAlgebra is an algebra of finite rank which can be generated by a single element.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if R has Field
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has DifferentialRing and R has Field or R has FiniteFieldCategory
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> % if R has Field
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Field
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Field or R has FiniteFieldCategory
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has Field
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- basis : () -> Vector(%)
- from FramedModule(R)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> UP
- from FiniteRankAlgebra(R, UP)
- charthRoot : % -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from PolynomialFactorizationExplicit
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Field or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- convert : UP -> %
convert(up)
converts the univariate polynomial up
to an algebra element, reducing by the definingPolynomial()
if necessary.
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> UP
- from ConvertibleTo(UP)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankAlgebra(R, UP)
- createPrimitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- definingPolynomial : () -> UP
definingPolynomial()
returns the minimal polynomial which generator()
satisfies.
- derivationCoordinates : (Vector(%), Mapping(R, R)) -> Matrix(R) if R has Field
derivationCoordinates(b, ')
returns M
such that b' = M b
.
- differentiate : % -> % if R has DifferentialRing and R has Field or R has FiniteFieldCategory
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> % if R has Field
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Field
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Field or R has FiniteFieldCategory
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- discreteLog : % -> NonNegativeInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- discriminant : () -> R
- from FramedAlgebra(R, UP)
- discriminant : Vector(%) -> R
- from FiniteRankAlgebra(R, UP)
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
- from EuclideanDomain
- enumerate : () -> List(%) if R has Finite
- from Finite
- euclideanSize : % -> NonNegativeInteger if R has Field
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has Field
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
- from EuclideanDomain
- factor : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger)) if R has FiniteFieldCategory
- from FiniteFieldCategory
- gcd : (%, %) -> % if R has Field
- from GcdDomain
- gcd : List(%) -> % if R has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field
- from GcdDomain
- generator : () -> %
generator()
returns the generator for this domain.
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- init : () -> % if R has FiniteFieldCategory
- from StepThrough
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has Field
- from GcdDomain
- lcm : List(%) -> % if R has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lift : % -> UP
lift(z)
returns a minimal degree univariate polynomial up such that z=reduce up
.
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- minimalPolynomial : % -> UP if R has Field
- from FiniteRankAlgebra(R, UP)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
- from EuclideanDomain
- nextItem : % -> Union(%, "failed") if R has FiniteFieldCategory
- from StepThrough
- norm : % -> R
- from FiniteRankAlgebra(R, UP)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger) if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- order : % -> PositiveInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean if R has Field
- from UniqueFactorizationDomain
- primeFrobenius : % -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primitive? : % -> Boolean if R has FiniteFieldCategory
- from FiniteFieldCategory
- primitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has Field
- from EuclideanDomain
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(R, UP)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : UP -> %
reduce(up)
converts the univariate polynomial up
to an algebra element, reducing by the definingPolynomial()
if necessary.
- reduce : Fraction(UP) -> Union(%, "failed") if R has Field
reduce(frac)
converts the fraction frac
to an algebra element.
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- regularRepresentation : % -> Matrix(R)
- from FramedAlgebra(R, UP)
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- rem : (%, %) -> % if R has Field
- from EuclideanDomain
- representationType : () -> Union("prime", "polynomial", "normal", "cyclic") if R has FiniteFieldCategory
- from FiniteFieldCategory
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankAlgebra(R, UP)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- sizeLess? : (%, %) -> Boolean if R has Field
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has Field
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger) if R has FiniteFieldCategory
- from FiniteFieldCategory
- trace : % -> R
- from FiniteRankAlgebra(R, UP)
- traceMatrix : () -> Matrix(R)
- from FramedAlgebra(R, UP)
- traceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- unit? : % -> Boolean if R has Field
- from EntireRing
- unitCanonical : % -> % if R has Field
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has Field
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(UP)
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
LinearlyExplicitOver(R)
BiModule(%, %)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
FramedModule(R)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
LeftOreRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
CharacteristicNonZero
LinearlyExplicitOver(Integer)
noZeroDivisors
RetractableTo(Fraction(Integer))
RightModule(%)
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
Magma
RightModule(R)
GcdDomain
LeftModule(%)
NonAssociativeRing
PartialDifferentialRing(Symbol)
CharacteristicZero
Algebra(%)
Module(R)
CommutativeRing
CoercibleFrom(Fraction(Integer))
DifferentialRing
PolynomialFactorizationExplicit
BiModule(R, R)
DivisionRing
IntegralDomain
Algebra(R)
DifferentialExtension(R)
CoercibleFrom(Integer)
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
RetractableTo(Integer)
CommutativeStar
AbelianMonoid
MagmaWithUnit
Comparable
NonAssociativeSemiRng
CoercibleFrom(R)
Hashable
Module(%)
CoercibleTo(OutputForm)
FramedAlgebra(R, UP)
Finite
SemiRng
Monoid
FiniteFieldCategory
NonAssociativeAlgebra(R)
NonAssociativeAlgebra(%)
FiniteRankAlgebra(R, UP)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
NonAssociativeRng
FieldOfPrimeCharacteristic
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(R)
StepThrough
AbelianGroup