RealNumberSystem

sf.spad line 16 [edit on github]

The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included DifferentialRing or the elementary functions (see TranscendentalFunctionCategory) in the definition.

* : (%, %) -> %
from Magma
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %
from OrderedRing
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
ceiling : % -> %

ceiling x returns the small integer >= x.

characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> DoubleFloat
from ConvertibleTo(DoubleFloat)
convert : % -> Float
from ConvertibleTo(Float)
convert : % -> Pattern(Float)
from ConvertibleTo(Pattern(Float))
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
floor : % -> %

floor x returns the largest integer <= x.

fractionPart : % -> %

fractionPart x returns the fractional part of x.

gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inv : % -> %
from DivisionRing
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
negative? : % -> Boolean
from OrderedRing
norm : % -> %

norm x returns the same as absolute value.

nthRoot : (%, Integer) -> %
from RadicalCategory
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable(Float)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from OrderedRing
prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
retract : % -> Fraction(Integer)
from RetractableTo(Fraction(Integer))
retract : % -> Integer
from RetractableTo(Integer)
retractIfCan : % -> Union(Fraction(Integer), "failed")
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
round : % -> %

round x computes the integer closest to x.

sample : () -> %
from AbelianMonoid
sign : % -> Integer
from OrderedRing
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
sqrt : % -> %
from RadicalCategory
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
truncate : % -> %

truncate x returns the integer between x and 0 closest to x.

unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
wholePart : % -> Integer

wholePart x returns the integer part of x.

zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Comparable

Module(Fraction(Integer))

noZeroDivisors

OrderedAbelianSemiGroup

LeftModule(Fraction(Integer))

RightModule(%)

GcdDomain

Monoid

AbelianMonoid

Algebra(%)

ConvertibleTo(DoubleFloat)

EuclideanDomain

EntireRing

NonAssociativeSemiRng

NonAssociativeAlgebra(Fraction(Integer))

CancellationAbelianMonoid

OrderedSet

MagmaWithUnit

NonAssociativeRing

RightModule(Fraction(Integer))

CoercibleFrom(Fraction(Integer))

RetractableTo(Integer)

RealConstant

unitsKnown

LeftModule(%)

canonicalUnitNormal

RadicalCategory

CommutativeStar

Module(%)

SetCategory

LeftOreRing

CoercibleTo(OutputForm)

Algebra(Fraction(Integer))

Rng

Field

PatternMatchable(Float)

ConvertibleTo(Float)

CommutativeRing

TwoSidedRecip

Magma

UniqueFactorizationDomain

SemiGroup

OrderedAbelianMonoid

DivisionRing

PartialOrder

CoercibleFrom(Integer)

AbelianGroup

AbelianSemiGroup

OrderedCancellationAbelianMonoid

RetractableTo(Fraction(Integer))

NonAssociativeSemiRing

ConvertibleTo(Pattern(Float))

SemiRng

canonicalsClosed

NonAssociativeAlgebra(%)

OrderedAbelianGroup

OrderedRing

PrincipalIdealDomain

BiModule(Fraction(Integer), Fraction(Integer))

NonAssociativeRng

Ring

CharacteristicZero

BasicType

BiModule(%, %)

SemiRing