RealNumberSystem
sf.spad line 16
[edit on github]
The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included DifferentialRing or the elementary functions (see TranscendentalFunctionCategory) in the definition.
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- ceiling : % -> %
ceiling x
returns the small integer >= x
.
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> DoubleFloat
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float
- from ConvertibleTo(Float)
- convert : % -> Pattern(Float)
- from ConvertibleTo(Pattern(Float))
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- floor : % -> %
floor x
returns the largest integer <= x
.
- fractionPart : % -> %
fractionPart x
returns the fractional part of x
.
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- norm : % -> %
norm x
returns the same as absolute value.
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
- from PatternMatchable(Float)
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean
- from OrderedRing
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> Fraction(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Fraction(Integer), "failed")
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- round : % -> %
round x
computes the integer closest to x
.
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- truncate : % -> %
truncate x
returns the integer between x
and 0 closest to x
.
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- wholePart : % -> Integer
wholePart x
returns the integer part of x
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Comparable
Module(Fraction(Integer))
noZeroDivisors
OrderedAbelianSemiGroup
LeftModule(Fraction(Integer))
RightModule(%)
GcdDomain
Monoid
AbelianMonoid
Algebra(%)
ConvertibleTo(DoubleFloat)
EuclideanDomain
EntireRing
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
OrderedSet
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
CoercibleFrom(Fraction(Integer))
RetractableTo(Integer)
RealConstant
unitsKnown
LeftModule(%)
canonicalUnitNormal
RadicalCategory
CommutativeStar
Module(%)
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
Field
PatternMatchable(Float)
ConvertibleTo(Float)
CommutativeRing
TwoSidedRecip
Magma
UniqueFactorizationDomain
SemiGroup
OrderedAbelianMonoid
DivisionRing
PartialOrder
CoercibleFrom(Integer)
AbelianGroup
AbelianSemiGroup
OrderedCancellationAbelianMonoid
RetractableTo(Fraction(Integer))
NonAssociativeSemiRing
ConvertibleTo(Pattern(Float))
SemiRng
canonicalsClosed
NonAssociativeAlgebra(%)
OrderedAbelianGroup
OrderedRing
PrincipalIdealDomain
BiModule(Fraction(Integer), Fraction(Integer))
NonAssociativeRng
Ring
CharacteristicZero
BasicType
BiModule(%, %)
SemiRing