FiniteBiCPO(S)
logic.spad line 1688
[edit on github]
Holds a complete set together with a structure to codify the partial order. For more documentation see: htm
- + : (%, %) -> %
- from FiniteGraph(S)
- = : (%, %) -> Boolean
- from BasicType
- addArrow! : (%, NonNegativeInteger, NonNegativeInteger) -> %
- from Poset(S)
- addArrow! : (%, Record(name : String, arrType : NonNegativeInteger, fromOb : NonNegativeInteger, toOb : NonNegativeInteger, xOffset : Integer, yOffset : Integer, map : List(NonNegativeInteger))) -> %
- from FiniteGraph(S)
- addArrow! : (%, String, S, S) -> %
- from FiniteGraph(S)
- addArrow! : (%, String, NonNegativeInteger, NonNegativeInteger) -> %
- from FiniteGraph(S)
- addArrow! : (%, String, NonNegativeInteger, NonNegativeInteger, List(NonNegativeInteger)) -> %
- from FiniteGraph(S)
- addObject! : (%, S) -> %
- from Poset(S)
- addObject! : (%, Record(value : S, posX : NonNegativeInteger, posY : NonNegativeInteger)) -> %
- from FiniteGraph(S)
- adjacencyMatrix : % -> Matrix(NonNegativeInteger)
- from FiniteGraph(S)
- arrowName : (%, NonNegativeInteger, NonNegativeInteger) -> String
- from FiniteGraph(S)
- arrowsFromArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- arrowsFromNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- arrowsToArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- arrowsToNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- completeReflexivity : % -> %
- from Poset(S)
- completeTransitivity : % -> %
- from Poset(S)
- coverMatrix : % -> IncidenceAlgebra(Integer, S)
- from Poset(S)
- createWidth : NonNegativeInteger -> NonNegativeInteger
- from FiniteGraph(S)
- createX : (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
- from FiniteGraph(S)
- createY : (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
- from FiniteGraph(S)
- cycleClosed : (List(S), String) -> %
- from FiniteGraph(S)
- cycleOpen : (List(S), String) -> %
- from FiniteGraph(S)
- deepDiagramSvg : (String, %, Boolean) -> Void
- from FiniteGraph(S)
- diagramHeight : % -> NonNegativeInteger
- from FiniteGraph(S)
- diagramSvg : (String, %, Boolean) -> Void
- from FiniteGraph(S)
- diagramWidth : % -> NonNegativeInteger
- from FiniteGraph(S)
- diagramsSvg : (String, List(%), Boolean) -> Void
- from FiniteGraph(S)
- distance : (%, NonNegativeInteger, NonNegativeInteger) -> Integer
- from FiniteGraph(S)
- distanceMatrix : % -> Matrix(Integer)
- from FiniteGraph(S)
- finitePoset : (List(S), List(List(Boolean))) -> %
- from Poset(S)
- finitePoset : (List(S), Mapping(Boolean, S, S)) -> %
- from Poset(S)
- flatten : DirectedGraph(%) -> %
- from FiniteGraph(S)
- getArr : % -> List(List(Boolean))
- from Poset(S)
- getArrowIndex : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
- from FiniteGraph(S)
- getArrows : % -> List(Record(name : String, arrType : NonNegativeInteger, fromOb : NonNegativeInteger, toOb : NonNegativeInteger, xOffset : Integer, yOffset : Integer, map : List(NonNegativeInteger)))
- from FiniteGraph(S)
- getVert : % -> List(S)
- from Poset(S)
- getVertexIndex : (%, S) -> NonNegativeInteger
- from FiniteGraph(S)
- getVertices : % -> List(Record(value : S, posX : NonNegativeInteger, posY : NonNegativeInteger))
- from FiniteGraph(S)
- glb : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- implies : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
- from Poset(S)
- inDegree : (%, NonNegativeInteger) -> NonNegativeInteger
- from FiniteGraph(S)
- incidenceMatrix : % -> Matrix(Integer)
- from FiniteGraph(S)
- indexToObject : (%, NonNegativeInteger) -> S
- from Poset(S)
- initial : () -> %
- from FiniteGraph(S)
- isAcyclic? : % -> Boolean
- from FiniteGraph(S)
- isAntiChain? : % -> Boolean
- from Poset(S)
- isAntisymmetric? : % -> Boolean
- from Poset(S)
- isChain? : % -> Boolean
- from Poset(S)
- isDirectSuccessor? : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
- from FiniteGraph(S)
- isDirected? : () -> Boolean
- from FiniteGraph(S)
- isFixPoint? : (%, NonNegativeInteger) -> Boolean
- from FiniteGraph(S)
- isFunctional? : % -> Boolean
- from FiniteGraph(S)
- isGreaterThan? : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
- from FiniteGraph(S)
- join : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
- from Dcpo(S)
- joinIfCan : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- joinIfCan : (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- kgraph : (List(S), String) -> %
- from FiniteGraph(S)
- laplacianMatrix : % -> Matrix(Integer)
- from FiniteGraph(S)
- latex : % -> String
- from SetCategory
- le : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
- from Preorder(S)
- loopsArrows : % -> List(Loop)
- from FiniteGraph(S)
- loopsAtNode : (%, NonNegativeInteger) -> List(Loop)
- from FiniteGraph(S)
- loopsNodes : % -> List(Loop)
- from FiniteGraph(S)
- looseEquals : (%, %) -> Boolean
- from FiniteGraph(S)
- lowerSet : % -> %
- from Poset(S)
- lub : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- map : (%, List(NonNegativeInteger), List(S), Integer, Integer) -> %
- from FiniteGraph(S)
- mapContra : (%, List(NonNegativeInteger), List(S), Integer, Integer) -> %
- from FiniteGraph(S)
- max : % -> NonNegativeInteger
- from FiniteGraph(S)
- max : (%, List(NonNegativeInteger)) -> NonNegativeInteger
- from FiniteGraph(S)
- meet : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
- from CoDcpo(S)
- meetIfCan : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- meetIfCan : (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, "failed")
- from Poset(S)
- merge : (%, %) -> %
- from FiniteGraph(S)
- min : % -> NonNegativeInteger
- from FiniteGraph(S)
- min : (%, List(NonNegativeInteger)) -> NonNegativeInteger
- from FiniteGraph(S)
- moebius : % -> IncidenceAlgebra(Integer, S)
- from Poset(S)
- nodeFromArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- nodeFromNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- nodeToArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- nodeToNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- objectToIndex : (%, S) -> NonNegativeInteger
- from Poset(S)
- opposite : % -> %
- from Poset(S)
- outDegree : (%, NonNegativeInteger) -> NonNegativeInteger
- from FiniteGraph(S)
- powerSetStructure : S -> %
- from Poset(S)
- routeArrows : (%, NonNegativeInteger, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- routeNodes : (%, NonNegativeInteger, NonNegativeInteger) -> List(NonNegativeInteger)
- from FiniteGraph(S)
- setArr : (%, List(List(Boolean))) -> Void
- from Poset(S)
- setVert : (%, List(S)) -> Void
- from Poset(S)
- spanningForestArrow : % -> List(Tree(Integer))
- from FiniteGraph(S)
- spanningForestNode : % -> List(Tree(Integer))
- from FiniteGraph(S)
- spanningTreeArrow : (%, NonNegativeInteger) -> Tree(Integer)
- from FiniteGraph(S)
- spanningTreeNode : (%, NonNegativeInteger) -> Tree(Integer)
- from FiniteGraph(S)
- subdiagramSvg : (Scene(SCartesian(2)), %, Boolean, Boolean) -> Void
- from FiniteGraph(S)
- terminal : S -> %
- from FiniteGraph(S)
- unit : (List(S), String) -> %
- from FiniteGraph(S)
- upperSet : % -> %
- from Poset(S)
- zetaMatrix : % -> IncidenceAlgebra(Integer, S)
- from Poset(S)
- ~= : (%, %) -> Boolean
- from BasicType
SetCategory
FiniteGraph(S)
Poset(S)
Dcpo(S)
CoDcpo(S)
CoercibleTo(OutputForm)
Preorder(S)
BiCPO(S)
BasicType