FiniteBiCPO(S)

logic.spad line 1688 [edit on github]

Holds a complete set together with a structure to codify the partial order. For more documentation see: htm

+ : (%, %) -> %
from FiniteGraph(S)
= : (%, %) -> Boolean
from BasicType
addArrow! : (%, NonNegativeInteger, NonNegativeInteger) -> %
from Poset(S)
addArrow! : (%, Record(name : String, arrType : NonNegativeInteger, fromOb : NonNegativeInteger, toOb : NonNegativeInteger, xOffset : Integer, yOffset : Integer, map : List(NonNegativeInteger))) -> %
from FiniteGraph(S)
addArrow! : (%, String, S, S) -> %
from FiniteGraph(S)
addArrow! : (%, String, NonNegativeInteger, NonNegativeInteger) -> %
from FiniteGraph(S)
addArrow! : (%, String, NonNegativeInteger, NonNegativeInteger, List(NonNegativeInteger)) -> %
from FiniteGraph(S)
addObject! : (%, S) -> %
from Poset(S)
addObject! : (%, Record(value : S, posX : NonNegativeInteger, posY : NonNegativeInteger)) -> %
from FiniteGraph(S)
adjacencyMatrix : % -> Matrix(NonNegativeInteger)
from FiniteGraph(S)
arrowName : (%, NonNegativeInteger, NonNegativeInteger) -> String
from FiniteGraph(S)
arrowsFromArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
arrowsFromNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
arrowsToArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
arrowsToNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
completeReflexivity : % -> %
from Poset(S)
completeTransitivity : % -> %
from Poset(S)
coverMatrix : % -> IncidenceAlgebra(Integer, S)
from Poset(S)
createWidth : NonNegativeInteger -> NonNegativeInteger
from FiniteGraph(S)
createX : (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph(S)
createY : (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph(S)
cycleClosed : (List(S), String) -> %
from FiniteGraph(S)
cycleOpen : (List(S), String) -> %
from FiniteGraph(S)
deepDiagramSvg : (String, %, Boolean) -> Void
from FiniteGraph(S)
diagramHeight : % -> NonNegativeInteger
from FiniteGraph(S)
diagramSvg : (String, %, Boolean) -> Void
from FiniteGraph(S)
diagramWidth : % -> NonNegativeInteger
from FiniteGraph(S)
diagramsSvg : (String, List(%), Boolean) -> Void
from FiniteGraph(S)
distance : (%, NonNegativeInteger, NonNegativeInteger) -> Integer
from FiniteGraph(S)
distanceMatrix : % -> Matrix(Integer)
from FiniteGraph(S)
finitePoset : (List(S), List(List(Boolean))) -> %
from Poset(S)
finitePoset : (List(S), Mapping(Boolean, S, S)) -> %
from Poset(S)
flatten : DirectedGraph(%) -> %
from FiniteGraph(S)
getArr : % -> List(List(Boolean))
from Poset(S)
getArrowIndex : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph(S)
getArrows : % -> List(Record(name : String, arrType : NonNegativeInteger, fromOb : NonNegativeInteger, toOb : NonNegativeInteger, xOffset : Integer, yOffset : Integer, map : List(NonNegativeInteger)))
from FiniteGraph(S)
getVert : % -> List(S)
from Poset(S)
getVertexIndex : (%, S) -> NonNegativeInteger
from FiniteGraph(S)
getVertices : % -> List(Record(value : S, posX : NonNegativeInteger, posY : NonNegativeInteger))
from FiniteGraph(S)
glb : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
from Poset(S)
implies : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from Poset(S)
inDegree : (%, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph(S)
incidenceMatrix : % -> Matrix(Integer)
from FiniteGraph(S)
indexToObject : (%, NonNegativeInteger) -> S
from Poset(S)
initial : () -> %
from FiniteGraph(S)
isAcyclic? : % -> Boolean
from FiniteGraph(S)
isAntiChain? : % -> Boolean
from Poset(S)
isAntisymmetric? : % -> Boolean
from Poset(S)
isChain? : % -> Boolean
from Poset(S)
isDirectSuccessor? : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from FiniteGraph(S)
isDirected? : () -> Boolean
from FiniteGraph(S)
isFixPoint? : (%, NonNegativeInteger) -> Boolean
from FiniteGraph(S)
isFunctional? : % -> Boolean
from FiniteGraph(S)
isGreaterThan? : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from FiniteGraph(S)
join : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from Dcpo(S)
joinIfCan : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
from Poset(S)
joinIfCan : (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, "failed")
from Poset(S)
kgraph : (List(S), String) -> %
from FiniteGraph(S)
laplacianMatrix : % -> Matrix(Integer)
from FiniteGraph(S)
latex : % -> String
from SetCategory
le : (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from Preorder(S)
loopsArrows : % -> List(Loop)
from FiniteGraph(S)
loopsAtNode : (%, NonNegativeInteger) -> List(Loop)
from FiniteGraph(S)
loopsNodes : % -> List(Loop)
from FiniteGraph(S)
looseEquals : (%, %) -> Boolean
from FiniteGraph(S)
lowerSet : % -> %
from Poset(S)
lub : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
from Poset(S)
map : (%, List(NonNegativeInteger), List(S), Integer, Integer) -> %
from FiniteGraph(S)
mapContra : (%, List(NonNegativeInteger), List(S), Integer, Integer) -> %
from FiniteGraph(S)
max : % -> NonNegativeInteger
from FiniteGraph(S)
max : (%, List(NonNegativeInteger)) -> NonNegativeInteger
from FiniteGraph(S)
meet : (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from CoDcpo(S)
meetIfCan : (%, List(NonNegativeInteger)) -> Union(NonNegativeInteger, "failed")
from Poset(S)
meetIfCan : (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, "failed")
from Poset(S)
merge : (%, %) -> %
from FiniteGraph(S)
min : % -> NonNegativeInteger
from FiniteGraph(S)
min : (%, List(NonNegativeInteger)) -> NonNegativeInteger
from FiniteGraph(S)
moebius : % -> IncidenceAlgebra(Integer, S)
from Poset(S)
nodeFromArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
nodeFromNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
nodeToArrow : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
nodeToNode : (%, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
objectToIndex : (%, S) -> NonNegativeInteger
from Poset(S)
opposite : % -> %
from Poset(S)
outDegree : (%, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph(S)
powerSetStructure : S -> %
from Poset(S)
routeArrows : (%, NonNegativeInteger, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
routeNodes : (%, NonNegativeInteger, NonNegativeInteger) -> List(NonNegativeInteger)
from FiniteGraph(S)
setArr : (%, List(List(Boolean))) -> Void
from Poset(S)
setVert : (%, List(S)) -> Void
from Poset(S)
spanningForestArrow : % -> List(Tree(Integer))
from FiniteGraph(S)
spanningForestNode : % -> List(Tree(Integer))
from FiniteGraph(S)
spanningTreeArrow : (%, NonNegativeInteger) -> Tree(Integer)
from FiniteGraph(S)
spanningTreeNode : (%, NonNegativeInteger) -> Tree(Integer)
from FiniteGraph(S)
subdiagramSvg : (Scene(SCartesian(2)), %, Boolean, Boolean) -> Void
from FiniteGraph(S)
terminal : S -> %
from FiniteGraph(S)
unit : (List(S), String) -> %
from FiniteGraph(S)
upperSet : % -> %
from Poset(S)
zetaMatrix : % -> IncidenceAlgebra(Integer, S)
from Poset(S)
~= : (%, %) -> Boolean
from BasicType

SetCategory

FiniteGraph(S)

Poset(S)

Dcpo(S)

CoDcpo(S)

CoercibleTo(OutputForm)

Preorder(S)

BiCPO(S)

BasicType