lindep.spad line 1 [edit on github]
Test for linear dependence.
linearDependence([v1, ..., vn])
returns [c1, ..., cn]
if c1*v1 + ... + cn*vn = 0
and not all the ci
's
are 0, "failed" if the vi
's
are linearly independent over S
.
linearlyDependent?([v1, ..., vn])
returns true
if the vi
's
are linearly dependent over S
, false
otherwise.
particularSolution([v1, ..., vn], u)
returns [c1, ..., cn]
such that c1*v1 + ... + cn*vn = u
, "failed" if no such ci
's
exist in S
.
particularSolution([v1, ..., vn], u)
returns [c1, ..., cn]
such that c1*v1 + ... + cn*vn = u
, "failed" if no such ci
's
exist in S
.
particularSolution([v1, ..., vn], u)
returns [c1, ..., cn]
such that c1*v1 + ... + cn*vn = u
, "failed" if no such ci
's
exist in the quotient field of S
.
particularSolution([v1, ..., vn], u)
returns [c1, ..., cn]
such that c1*v1 + ... + cn*vn = u
, "failed" if no such ci
's
exist in the quotient field of S
.
solveLinear([v1, ..., vn], u)
returns solution of the system c1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous system c1*v1 + ... + cn*vn = 0
solveLinear([v1, ..., vn], u)
returns solution of the system c1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous system c1*v1 + ... + cn*vn = 0
solveLinear([v1, ..., vn], u)
returns solution of the system c1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous system c1*v1 + ... + cn*vn = 0
solveLinear([v1, ..., vn], u)
returns solution of the system c1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous system c1*v1 + ... + cn*vn = 0