ModularAlgebraicGcdTools3

amodgcd.spad line 688 [edit on github]

undocumented

MPtoMPT : (Polynomial(Integer), Symbol, List(Symbol), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer)) -> Union(SparseUnivariatePolynomial(Polynomial(Integer)), "failed")
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
canonicalIfCan : (SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer)) -> Union(SparseUnivariatePolynomial(Polynomial(Integer)), "failed")
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
degree : SparseUnivariatePolynomial(Polynomial(Integer)) -> Integer
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
m_inverse : (Polynomial(Integer), List(Polynomial(Integer)), List(Symbol), Integer) -> Union(Polynomial(Integer), "failed")

m_inverse(x, lm, lv, p) computes inverse of x in algebraic extension defined by lm.

pack_exps : (Integer, Integer, Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer)) -> SortedExponentVector
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
pack_exps0 : (SortedExponentVector, List(Integer), Integer, Integer) -> Void

pack_exps0(exps, sizes, ns, start) is used by pack_exps.

pack_modulus : (List(Polynomial(Integer)), List(Symbol), Integer) -> Union(Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer), "failed")
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
pseudoRem : (SparseUnivariatePolynomial(Polynomial(Integer)), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer)) -> SparseUnivariatePolynomial(Polynomial(Integer))
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
repack1 : (SparseUnivariatePolynomial(Polynomial(Integer)), U32Vector, Integer, Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer)) -> Void
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))
zero? : SparseUnivariatePolynomial(Polynomial(Integer)) -> Boolean
from ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))

ModularAlgebraicGcdOperations(Polynomial(Integer), SparseUnivariatePolynomial(Polynomial(Integer)), Record(svz : List(Symbol), sm : List(Polynomial(Integer)), msizes : List(Integer), sp : Integer))