primelt.spad line 1 [edit on github]
PrimitiveElement provides functions to compute primitive elements in algebraic extensions.
primitiveElement([p1, ..., pn], [a1, ..., an])
returns [[c1, ..., cn], [q1, ..., qn], q]
such that then k(a1, ..., an) = k(a)
, where a = a1 c1 + ... + an cn
,
, and ai
= qi
(a)q(a) = 0
. The pi
's
are the defining polynomials for the ai
's
. This operation uses the technique of Groebner basis.
primitiveElement([p1, ..., pn], [a1, ..., an], a)
returns [[c1, ..., cn], [q1, ..., qn], q]
such that then k(a1, ..., an) = k(a)
, where a = a1 c1 + ... + an cn
,
, and ai
= qi
(a)q(a) = 0
. The pi
's
are the defining polynomials for the ai
's
. This operation uses the technique of Groebner basis.
primitiveElement(p1, a1, p2, a2)
returns [c1, c2, q]
such that k(a1, a2) = k(a)
where a = c1 a1 + c2 a2, and q(a) = 0
. The pi
's
are the defining polynomials for the ai
's
. The p2
may involve a1
, but p1
must not involve a2
. This operation uses resultant.