RDEaux(F)

intpar.spad line 753 [edit on github]

This package contains special case for RDE solver.

SPDE1 : (SparseUnivariatePolynomial(F), SparseUnivariatePolynomial(F), Mapping(SparseUnivariatePolynomial(F), SparseUnivariatePolynomial(F))) -> Record(ans : SparseUnivariatePolynomial(F), remainder : SparseUnivariatePolynomial(F))

SPDE1(b, c, D) solves Q' + b Q = c and returns [Q, r] where r = c - ( Q' + b Q). That is when r is zero then Q is true solution, otherwise r represents unsolved part of c. Moreover def(r) < deg(bQ). Note: SPDE1 assumes that deg(Q') < deg(bQ) for all Q.

multi_SPDE : (SparseUnivariatePolynomial(F), SparseUnivariatePolynomial(F), List(SparseUnivariatePolynomial(F)), Integer, Mapping(SparseUnivariatePolynomial(F), SparseUnivariatePolynomial(F))) -> Union(List(Record(ans : SparseUnivariatePolynomial(F), remainder : SparseUnivariatePolynomial(F))), Record(ans : List(SparseUnivariatePolynomial(F)), acoeff : SparseUnivariatePolynomial(F), eegen : SparseUnivariatePolynomial(F), bpar : SparseUnivariatePolynomial(F), lcpar : List(SparseUnivariatePolynomial(F)), dpar : Integer))

multi_SPDE(a, b, lc, d, der)