Automorphism(R)

ore.spad line 291 [edit on github]

Automorphism R is the multiplicative group of automorphisms of R.

* : (%, %) -> %
from Magma
/ : (%, %) -> %
from Group
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, Integer) -> %
from Group
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from Group
conjugate : (%, %) -> %
from Group
elt : (%, R) -> R
from Eltable(R, R)
inv : % -> %
from Group
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
morphism : Mapping(R, R) -> %

morphism(f) returns the non-invertible morphism given by f.

morphism : (Mapping(R, R), Mapping(R, R)) -> %

morphism(f, g) returns the invertible morphism given by f, where g is the inverse of f..

morphism : Mapping(R, R, Integer) -> %

morphism(f) returns the morphism given by f^n(x) = f(x, n).

one? : % -> Boolean
from MagmaWithUnit
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from MagmaWithUnit
~= : (%, %) -> Boolean
from BasicType

SetCategory

Eltable(R, R)

Group

CoercibleTo(OutputForm)

MagmaWithUnit

TwoSidedRecip

SemiGroup

unitsKnown

Magma

Monoid

BasicType