Automorphism(R)
ore.spad line 291
[edit on github]
Automorphism R
is the multiplicative group of automorphisms of R
.
- * : (%, %) -> %
- from Magma
- / : (%, %) -> %
- from Group
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Integer) -> %
- from Group
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from Group
- conjugate : (%, %) -> %
- from Group
- elt : (%, R) -> R
- from Eltable(R, R)
- inv : % -> %
- from Group
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- morphism : Mapping(R, R) -> %
morphism(f)
returns the non-invertible morphism given by f
.
- morphism : (Mapping(R, R), Mapping(R, R)) -> %
morphism(f, g)
returns the invertible morphism given by f
, where g
is the inverse of f
..
- morphism : Mapping(R, R, Integer) -> %
morphism(f)
returns the morphism given by f^n(x) = f(x, n)
.
- one? : % -> Boolean
- from MagmaWithUnit
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from MagmaWithUnit
- ~= : (%, %) -> Boolean
- from BasicType
SetCategory
Eltable(R, R)
Group
CoercibleTo(OutputForm)
MagmaWithUnit
TwoSidedRecip
SemiGroup
unitsKnown
Magma
Monoid
BasicType