BinaryTreeCategory(S)
tree.spad line 131
[edit on github]
BinaryTreeCategory(S) is the category of binary trees: a tree which is either empty or has a node consisting of a value and a left and right which are both binary trees.
- # : % -> NonNegativeInteger
- from Aggregate
- = : (%, %) -> Boolean
- from BasicType
- any? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- child? : (%, %) -> Boolean
- from RecursiveAggregate(S)
- children : % -> List(%)
- from RecursiveAggregate(S)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- copy : % -> %
- from Aggregate
- count : (S, %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- count : (Mapping(Boolean, S), %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- cyclic? : % -> Boolean
- from RecursiveAggregate(S)
- distance : (%, %) -> Integer
- from RecursiveAggregate(S)
- elt : (%, "left") -> %
- from BinaryRecursiveAggregate(S)
- elt : (%, "right") -> %
- from BinaryRecursiveAggregate(S)
- elt : (%, "value") -> S
- from RecursiveAggregate(S)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, S, S) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, Equation(S)) -> % if S has Evalable(S)
- from Evalable(S)
- eval : (%, List(S), List(S)) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, List(Equation(S))) -> % if S has Evalable(S)
- from Evalable(S)
- every? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- hash : % -> SingleInteger if S has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if S has Hashable
- from Hashable
- latex : % -> String
- from SetCategory
- leaf? : % -> Boolean
- from RecursiveAggregate(S)
- leaves : % -> List(S)
- from RecursiveAggregate(S)
- left : % -> %
- from BinaryRecursiveAggregate(S)
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- map : (Mapping(S, S), %) -> %
- from HomogeneousAggregate(S)
- map! : (Mapping(S, S), %) -> %
- from HomogeneousAggregate(S)
- max : % -> S if S has OrderedSet
- from HomogeneousAggregate(S)
- max : (Mapping(Boolean, S, S), %) -> S
- from HomogeneousAggregate(S)
- member? : (S, %) -> Boolean
- from HomogeneousAggregate(S)
- members : % -> List(S)
- from HomogeneousAggregate(S)
- min : % -> S if S has OrderedSet
- from HomogeneousAggregate(S)
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- node : (%, S, %) -> %
node(l, v, r)
creates a binary tree with value v
, left subtree l
, and right subtree r
.
- node? : (%, %) -> Boolean
- from RecursiveAggregate(S)
- nodes : % -> List(%)
- from RecursiveAggregate(S)
- parts : % -> List(S)
- from HomogeneousAggregate(S)
- right : % -> %
- from BinaryRecursiveAggregate(S)
- sample : () -> %
- from Aggregate
- setchildren! : (%, List(%)) -> %
- from RecursiveAggregate(S)
- setelt! : (%, "left", %) -> %
- from BinaryRecursiveAggregate(S)
- setelt! : (%, "right", %) -> %
- from BinaryRecursiveAggregate(S)
- setelt! : (%, "value", S) -> S
- from RecursiveAggregate(S)
- setleft! : (%, %) -> %
- from BinaryRecursiveAggregate(S)
- setright! : (%, %) -> %
- from BinaryRecursiveAggregate(S)
- setvalue! : (%, S) -> S
- from RecursiveAggregate(S)
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- value : % -> S
- from RecursiveAggregate(S)
- ~= : (%, %) -> Boolean
- from BasicType
BasicType
shallowlyMutable
HomogeneousAggregate(S)
RecursiveAggregate(S)
SetCategory
Hashable
finiteAggregate
BinaryRecursiveAggregate(S)
CoercibleTo(OutputForm)
InnerEvalable(S, S)
Aggregate
Evalable(S)