Coalgebra(R, MxM)

tensor.spad line 447 [edit on github]

A coalgebra A over a ring is an R-module with a coassociative comultiplication from A to the tensor product of A with itself and which possesses a counit.

* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coproduct : % -> MxM

coproduct(x) computes the coproduct of an element x

counit : % -> R

counit(x) evaluates the counit at an element x

latex : % -> String
from SetCategory
opposite? : (%, %) -> Boolean
from AbelianMonoid
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CancellationAbelianMonoid

SetCategory

CoercibleTo(OutputForm)

AbelianMonoid

RightModule(R)

AbelianSemiGroup

BiModule(R, R)

Module(R)

LeftModule(R)

BasicType

AbelianGroup