Coalgebra(R, MxM)
tensor.spad line 447
[edit on github]
A coalgebra A over a ring is an R
-module with a coassociative comultiplication from A to the tensor product of A with itself and which possesses a counit.
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coproduct : % -> MxM
coproduct(x)
computes the coproduct of an element x
- counit : % -> R
counit(x)
evaluates the counit at an element x
- latex : % -> String
- from SetCategory
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CancellationAbelianMonoid
SetCategory
CoercibleTo(OutputForm)
AbelianMonoid
RightModule(R)
AbelianSemiGroup
BiModule(R, R)
Module(R)
LeftModule(R)
BasicType
AbelianGroup