free.spad line 383 [edit on github]
The free group on a set S
is the group of finite products of the form reduce(*, [
where the si
^ ni
])si
's
are in S
, and the ni
's
are integers. The multiplication is not commutative.
x * s
returns the product of x
by s
on the right.
s * x
returns the product of x
by s
on the left.
s ^ n
returns the product of s
by itself n
times.
factors(a1^e1, ..., an^en)
returns [[a1, e1], ..., [an, en]]
.
mapExpon(f, a1^e1 ... an^en)
returns a1^f(e1) ... an^f(en)
.
mapGen(f, a1^e1 ... an^en)
returns f(a1)^e1 ... f(an)^en
.
nthExpon(x, n)
returns the exponent of the n^th monomial of x
.
nthFactor(x, n)
returns the factor of the n^th monomial of x
.
size(x)
returns the number of monomials in x
.