fparfrac.spad line 1 [edit on github]
Full partial fraction expansion of rational functions.
p + x returns the sum of p and x
D(f) returns the derivative of f.
D(f, n) returns the n-th derivative of f.
construct(l) is the inverse of fracPart.
differentiate(f) returns the derivative of f.
differentiate(f, n) returns the n-th derivative of f.
fracPart(f) returns the list of summands of the fractional part of f.
fullPartialFraction(f) returns [p, [[j, Dj, Hj]...]] such that f = p(x) + \sum_[j, Dj, Hj] in l \sum_Dj(a)=0 Hj(a)/(x - a)^j.
polyPart(f) returns the polynomial part of f.
ConvertibleTo(Fraction(UP))