fparfrac.spad line 1 [edit on github]
Full partial fraction expansion of rational functions.
p + x
returns the sum of p
and x
D(f)
returns the derivative of f
.
D(f, n)
returns the n
-th derivative of f
.
construct(l)
is the inverse of fracPart.
differentiate(f)
returns the derivative of f
.
differentiate(f, n)
returns the n
-th derivative of f
.
fracPart(f)
returns the list of summands of the fractional part of f
.
fullPartialFraction(f)
returns [p, [[j, Dj, Hj]...]]
such that f = p(x) + \sum_[j, Dj, Hj] in l \sum_Dj(a)=0 Hj(a)/(x - a)^j
.
polyPart(f)
returns the polynomial part of f
.
ConvertibleTo(Fraction(UP))