GeneralModulePolynomial(vl, R, IS, E, ff, P)

modmonom.spad line 31 [edit on github]

This package is undocumented

* : (%, P) -> %
from RightModule(P)
* : (%, R) -> %
from RightModule(R)
* : (P, %) -> %

p*x is undocumented

* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
build : (R, IS, E) -> %

build(r, i, e) is undocumented

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
latex : % -> String
from SetCategory
leadingCoefficient : % -> R

leadingCoefficient(x) is undocumented

leadingExponent : % -> E

leadingExponent(x) is undocumented

leadingIndex : % -> IS

leadingIndex(x) is undocumented

leadingMonomial : % -> ModuleMonomial(IS, E, ff)

leadingMonomial(x) is undocumented

monomial : (R, ModuleMonomial(IS, E, ff)) -> %

monomial(r, x) is undocumented

multMonom : (R, E, %) -> %

multMonom(r, e, x) is undocumented

opposite? : (%, %) -> Boolean
from AbelianMonoid
reductum : % -> %

reductum(x) is undocumented

sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unitVector : IS -> %

unitVector(x) is undocumented

zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

BiModule(P, P)

BiModule(R, R)

Module(R)

BasicType

RightModule(R)

LeftModule(P)

AbelianGroup

AbelianSemiGroup

SetCategory

AbelianMonoid

Module(P)

LeftModule(R)

RightModule(P)

CoercibleTo(OutputForm)

CancellationAbelianMonoid