GeneralModulePolynomial(vl, R, IS, E, ff, P)
modmonom.spad line 31
[edit on github]
This package is undocumented
- * : (%, P) -> %
- from RightModule(P)
- * : (%, R) -> %
- from RightModule(R)
- * : (P, %) -> %
p*x
is undocumented
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- build : (R, IS, E) -> %
build(r, i, e)
is undocumented
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
leadingCoefficient(x)
is undocumented
- leadingExponent : % -> E
leadingExponent(x)
is undocumented
- leadingIndex : % -> IS
leadingIndex(x)
is undocumented
- leadingMonomial : % -> ModuleMonomial(IS, E, ff)
leadingMonomial(x)
is undocumented
- monomial : (R, ModuleMonomial(IS, E, ff)) -> %
monomial(r, x)
is undocumented
- multMonom : (R, E, %) -> %
multMonom(r, e, x)
is undocumented
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- reductum : % -> %
reductum(x)
is undocumented
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unitVector : IS -> %
unitVector(x)
is undocumented
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
BiModule(P, P)
BiModule(R, R)
Module(R)
BasicType
RightModule(R)
LeftModule(P)
AbelianGroup
AbelianSemiGroup
SetCategory
AbelianMonoid
Module(P)
LeftModule(R)
RightModule(P)
CoercibleTo(OutputForm)
CancellationAbelianMonoid