genups.spad line 117 [edit on github]
GenerateUnivariatePowerSeries provides functions that create power series from explicit formulas for their nth coefficient.
laurent(a(n), n, x=a, n0..) returns sum(n = n0.., a(n) * (x - a)^n); laurent(a(n), n, x=a, n0..n1) returns sum(n = n0..n1, a(n) * (x - a)^n).
laurent(n +-> a(n), x = a, n0..) returns sum(n = n0.., a(n) * (x - a)^n); laurent(n +-> a(n), x = a, n0..n1) returns sum(n = n0..n1, a(n) * (x - a)^n).
puiseux(a(n), n, x = a, r0.., r) returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n); puiseux(a(n), n, x = a, r0..r1, r) returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
puiseux(n +-> a(n), x = a, r0.., r) returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n); puiseux(n +-> a(n), x = a, r0..r1, r) returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
series(a(n), n, x = a) returns sum(n = 0.., a(n)*(x-a)^n).
series(a(n), n, x = a, r0.., r) returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n); series(a(n), n, x = a, r0..r1, r) returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
series(a(n), n, x=a, n0..) returns sum(n = n0.., a(n) * (x - a)^n); series(a(n), n, x=a, n0..n1) returns sum(n = n0..n1, a(n) * (x - a)^n).
series(n +-> a(n), x = a, r0.., r) returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n); series(n +-> a(n), x = a, r0..r1, r) returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
series(n +-> a(n), x = a) returns sum(n = 0.., a(n)*(x-a)^n).
series(n +-> a(n), x = a, n0..) returns sum(n = n0.., a(n) * (x - a)^n); series(n +-> a(n), x = a, n0..n1) returns sum(n = n0..n1, a(n) * (x - a)^n).
taylor(a(n), n, x = a) returns sum(n = 0.., a(n)*(x-a)^n).
taylor(a(n), n, x = a, n0..) returns sum(n = n0.., a(n)*(x-a)^n); taylor(a(n), n, x = a, n0..n1) returns sum(n = n0.., a(n)*(x-a)^n).
taylor(n +-> a(n), x = a) returns sum(n = 0.., a(n)*(x-a)^n).
taylor(n +-> a(n), x = a, n0..) returns sum(n=n0.., a(n)*(x-a)^n); taylor(n +-> a(n), x = a, n0..n1) returns sum(n = n0.., a(n)*(x-a)^n).