genups.spad line 117 [edit on github]
GenerateUnivariatePowerSeries provides functions that create power series from explicit formulas for their n
th coefficient.
laurent(a(n), n, x=a, n0..)
returns sum(n = n0.., a(n) * (x - a)^n)
; laurent(a(n), n, x=a, n0..n1)
returns sum(n = n0..n1, a(n) * (x - a)^n)
.
laurent(n +-> a(n), x = a, n0..)
returns sum(n = n0.., a(n) * (x - a)^n)
; laurent(n +-> a(n), x = a, n0..n1)
returns sum(n = n0..n1, a(n) * (x - a)^n)
.
puiseux(a(n), n, x = a, r0.., r)
returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
; puiseux(a(n), n, x = a, r0..r1, r)
returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
puiseux(n +-> a(n), x = a, r0.., r)
returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
; puiseux(n +-> a(n), x = a, r0..r1, r)
returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
series(a(n), n, x = a)
returns sum(n = 0.., a(n)*(x-a)^n)
.
series(a(n), n, x = a, r0.., r)
returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
; series(a(n), n, x = a, r0..r1, r)
returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
series(a(n), n, x=a, n0..)
returns sum(n = n0.., a(n) * (x - a)^n)
; series(a(n), n, x=a, n0..n1)
returns sum(n = n0..n1, a(n) * (x - a)^n)
.
series(n +-> a(n), x = a, r0.., r)
returns sum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n)
; series(n +-> a(n), x = a, r0..r1, r)
returns sum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n)
.
series(n +-> a(n), x = a)
returns sum(n = 0.., a(n)*(x-a)^n)
.
series(n +-> a(n), x = a, n0..)
returns sum(n = n0.., a(n) * (x - a)^n)
; series(n +-> a(n), x = a, n0..n1)
returns sum(n = n0..n1, a(n) * (x - a)^n)
.
taylor(a(n), n, x = a)
returns sum(n = 0.., a(n)*(x-a)^n)
.
taylor(a(n), n, x = a, n0..)
returns sum(n = n0.., a(n)*(x-a)^n)
; taylor(a(n), n, x = a, n0..n1)
returns sum(n = n0.., a(n)*(x-a)^n)
.
taylor(n +-> a(n), x = a)
returns sum(n = 0.., a(n)*(x-a)^n)
.
taylor(n +-> a(n), x = a, n0..)
returns sum(n=n0.., a(n)*(x-a)^n)
; taylor(n +-> a(n), x = a, n0..n1)
returns sum(n = n0.., a(n)*(x-a)^n)
.