LieAlgebra(R)

xlpoly.spad line 299 [edit on github]

The category of Lie Algebras. It is used by the following domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author : Michel Petitot (petitot@lifl.fr).

* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field

x/r returns the division of x by r.

0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
construct : (%, %) -> %

construct(x, y) returns the Lie bracket of x and y.

latex : % -> String
from SetCategory
opposite? : (%, %) -> Boolean
from AbelianMonoid
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CancellationAbelianMonoid

SetCategory

CoercibleTo(OutputForm)

AbelianMonoid

RightModule(R)

AbelianSemiGroup

BiModule(R, R)

Module(R)

LeftModule(R)

BasicType

AbelianGroup