MultivariateSquareFree(E, OV, R, P)
multsqfr.spad line 1
[edit on github]
This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses modular reduction and the package MultivariateLifting
for the "multivariate" lifting.
- check : (List(Record(factor : SparseUnivariatePolynomial(R), exponent : NonNegativeInteger)), List(Record(factor : SparseUnivariatePolynomial(R), exponent : NonNegativeInteger))) -> Boolean
check should
be local
- coefChoose : (Integer, P, List(Record(factor : P, exponent : NonNegativeInteger))) -> P
coefChoose should
be local
- compdegd : List(Record(factor : SparseUnivariatePolynomial(R), exponent : NonNegativeInteger)) -> Integer
compdegd should
be local
- consnewpol : (SparseUnivariatePolynomial(P), SparseUnivariatePolynomial(R), Integer) -> Record(pol : SparseUnivariatePolynomial(P), polval : SparseUnivariatePolynomial(R))
consnewpol should
be local
- intChoose : (SparseUnivariatePolynomial(P), List(OV), List(List(R))) -> Record(upol : SparseUnivariatePolynomial(R), Lval : List(R), Lfact : List(Record(factor : SparseUnivariatePolynomial(R), exponent : NonNegativeInteger)), ctpol : R)
intChoose should
be local
- lift : (SparseUnivariatePolynomial(P), SparseUnivariatePolynomial(R), SparseUnivariatePolynomial(R), P, List(OV), List(NonNegativeInteger), List(R), R) -> Union(List(SparseUnivariatePolynomial(P)), "failed")
lift should
be local
- myDegree : (SparseUnivariatePolynomial(P), List(OV), NonNegativeInteger) -> List(NonNegativeInteger)
myDegree should
be local
- normDeriv2 : (SparseUnivariatePolynomial(R), Integer) -> SparseUnivariatePolynomial(R)
normDeriv2 should
be local
- nsqfree : (SparseUnivariatePolynomial(P), List(OV), List(List(R))) -> Record(unitPart : P, suPart : List(Record(factor : SparseUnivariatePolynomial(P), exponent : NonNegativeInteger)))
nsqfree should
be local
- squareFree : P -> Factored(P)
squareFree(p)
computes the square free decomposition of a multivariate polynomial p
.
- squareFree : SparseUnivariatePolynomial(P) -> Factored(SparseUnivariatePolynomial(P))
squareFree(p)
computes the square free decomposition of a multivariate polynomial p
presented as a univariate polynomial with multivariate coefficients.
- univcase : (P, OV) -> Factored(P)
univcase should
be local