RightOpenIntervalRootCharacterization(TheField, ThePolDom)

reclos.spad line 410 [edit on github]

RightOpenIntervalRootCharacterization provides work with interval root coding.

= : (%, %) -> Boolean
from BasicType
allRootsOf : ThePolDom -> List(%)
from RealRootCharacterizationCategory(TheField, ThePolDom)
approximate : (ThePolDom, %, TheField) -> TheField
from RealRootCharacterizationCategory(TheField, ThePolDom)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
definingPolynomial : % -> ThePolDom
from RealRootCharacterizationCategory(TheField, ThePolDom)
latex : % -> String
from SetCategory
left : % -> TheField

left(rootChar) is the left bound of the isolating interval

middle : % -> TheField

middle(rootChar) is the middle of the isolating interval

mightHaveRoots : (ThePolDom, %) -> Boolean

mightHaveRoots(p, r) is false if p.r is not 0

negative? : (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
positive? : (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
recip : (ThePolDom, %) -> Union(ThePolDom, "failed")
from RealRootCharacterizationCategory(TheField, ThePolDom)
refine : % -> %

refine(rootChar) shrinks isolating interval around rootChar

relativeApprox : (ThePolDom, %, TheField) -> TheField

relativeApprox(exp, c, p) = a is relatively close to exp as a polynomial in c up to precision p

right : % -> TheField

right(rootChar) is the right bound of the isolating interval

rootOf : (ThePolDom, PositiveInteger) -> Union(%, "failed")
from RealRootCharacterizationCategory(TheField, ThePolDom)
sign : (ThePolDom, %) -> Integer
from RealRootCharacterizationCategory(TheField, ThePolDom)
size : % -> TheField

The size of the isolating interval

zero? : (ThePolDom, %) -> Boolean
from RealRootCharacterizationCategory(TheField, ThePolDom)
~= : (%, %) -> Boolean
from BasicType

RealRootCharacterizationCategory(TheField, ThePolDom)

CoercibleTo(OutputForm)

BasicType

SetCategory