RightOpenIntervalRootCharacterization(TheField, ThePolDom)
reclos.spad line 410
[edit on github]
RightOpenIntervalRootCharacterization provides work with interval root coding.
- = : (%, %) -> Boolean
- from BasicType
- allRootsOf : ThePolDom -> List(%)
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- approximate : (ThePolDom, %, TheField) -> TheField
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- definingPolynomial : % -> ThePolDom
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- latex : % -> String
- from SetCategory
- left : % -> TheField
left(rootChar)
is the left bound of the isolating interval
- middle : % -> TheField
middle(rootChar)
is the middle of the isolating interval
- mightHaveRoots : (ThePolDom, %) -> Boolean
mightHaveRoots(p, r)
is false
if p.r
is not 0
- negative? : (ThePolDom, %) -> Boolean
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- positive? : (ThePolDom, %) -> Boolean
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- recip : (ThePolDom, %) -> Union(ThePolDom, "failed")
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- refine : % -> %
refine(rootChar)
shrinks isolating interval around rootChar
- relativeApprox : (ThePolDom, %, TheField) -> TheField
relativeApprox(exp, c, p) = a
is relatively close to exp as a polynomial in c
up to precision p
- right : % -> TheField
right(rootChar)
is the right bound of the isolating interval
- rootOf : (ThePolDom, PositiveInteger) -> Union(%, "failed")
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- sign : (ThePolDom, %) -> Integer
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- size : % -> TheField
The size of the isolating interval
- zero? : (ThePolDom, %) -> Boolean
- from RealRootCharacterizationCategory(TheField, ThePolDom)
- ~= : (%, %) -> Boolean
- from BasicType
RealRootCharacterizationCategory(TheField, ThePolDom)
CoercibleTo(OutputForm)
BasicType
SetCategory