TensorProductCategory(R, M, N)
tensor.spad line 19
[edit on github]
Category of tensor products of modules over commutative rings.
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- latex : % -> String
- from SetCategory
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tensor : (M, N) -> %
tensor(x, y)
constructs the tensor product of the elements x
and y
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CancellationAbelianMonoid
SetCategory
CoercibleTo(OutputForm)
AbelianMonoid
RightModule(R)
AbelianSemiGroup
BiModule(R, R)
Module(R)
LeftModule(R)
BasicType
AbelianGroup