WuWenTsunTriangularSet(R, E, V, P)
triset.spad line 1382
[edit on github]
A domain constructor of the category GeneralTriangularSet. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The construct operation does not check the previous requirement. Triangular sets are stored as sorted lists w.r.t. the main variables of their members. Furthermore, this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.
- # : % -> NonNegativeInteger
- from Aggregate
- = : (%, %) -> Boolean
- from BasicType
- algebraic? : (V, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- algebraicVariables : % -> List(V)
- from TriangularSetCategory(R, E, V, P)
- any? : (Mapping(Boolean, P), %) -> Boolean
- from HomogeneousAggregate(P)
- autoReduced? : (%, Mapping(Boolean, P, List(P))) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- basicSet : (List(P), Mapping(Boolean, P), Mapping(Boolean, P, P)) -> Union(Record(bas : %, top : List(P)), "failed")
- from TriangularSetCategory(R, E, V, P)
- basicSet : (List(P), Mapping(Boolean, P, P)) -> Union(Record(bas : %, top : List(P)), "failed")
- from TriangularSetCategory(R, E, V, P)
- characteristicSerie : List(P) -> List(%)
characteristicSerie(ps) returns the same as characteristicSerie(ps, initiallyReduced?, initiallyReduce).
- characteristicSerie : (List(P), Mapping(Boolean, P, P), Mapping(P, P, P)) -> List(%)
characteristicSerie(ps, redOp?, redOp) returns a list lts of triangular sets such that the zero set of ps is the union of the regular zero sets of the members of lts. This is made by the Ritt and Wu Wen Tsun process applying the operation characteristicSet(ps, redOp?, redOp) to compute characteristic sets in Wu Wen Tsun sense.
- characteristicSet : List(P) -> Union(%, "failed")
characteristicSet(ps) returns the same as characteristicSet(ps, initiallyReduced?, initiallyReduce).
- characteristicSet : (List(P), Mapping(Boolean, P, P), Mapping(P, P, P)) -> Union(%, "failed")
characteristicSet(ps, redOp?, redOp) returns a non-contradictory characteristic set of ps in Wu Wen Tsun sense w.r.t the reduction-test redOp? (using redOp to reduce polynomials w.r.t a redOp? basic set), if no non-zero constant polynomial appear during those reductions, else "failed" is returned. The operations redOp and redOp? must satisfy the following conditions: redOp?(redOp(p, q), q) holds for every polynomials p, q and there exists an integer e and a polynomial f such that we have init(q)^e*p = f*q + redOp(p, q).
- coHeight : % -> NonNegativeInteger if V has Finite
- from TriangularSetCategory(R, E, V, P)
- coerce : % -> List(P)
- from CoercibleTo(List(P))
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- collect : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- collectQuasiMonic : % -> %
- from TriangularSetCategory(R, E, V, P)
- collectUnder : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- collectUpper : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- construct : List(P) -> %
- from Collection(P)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (P, %) -> NonNegativeInteger
- from HomogeneousAggregate(P)
- count : (Mapping(Boolean, P), %) -> NonNegativeInteger
- from HomogeneousAggregate(P)
- degree : % -> NonNegativeInteger
- from TriangularSetCategory(R, E, V, P)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, P, P) -> % if P has Evalable(P)
- from InnerEvalable(P, P)
- eval : (%, Equation(P)) -> % if P has Evalable(P)
- from Evalable(P)
- eval : (%, List(P), List(P)) -> % if P has Evalable(P)
- from InnerEvalable(P, P)
- eval : (%, List(Equation(P))) -> % if P has Evalable(P)
- from Evalable(P)
- every? : (Mapping(Boolean, P), %) -> Boolean
- from HomogeneousAggregate(P)
- extend : (%, P) -> %
- from TriangularSetCategory(R, E, V, P)
- extendIfCan : (%, P) -> Union(%, "failed")
- from TriangularSetCategory(R, E, V, P)
- find : (Mapping(Boolean, P), %) -> Union(P, "failed")
- from Collection(P)
- first : % -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- headReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- headReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- headReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- headRemainder : (P, %) -> Record(num : P, den : R)
- from PolynomialSetCategory(R, E, V, P)
- iexactQuo : (R, R) -> R
- from PolynomialSetCategory(R, E, V, P)
- infRittWu? : (%, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initiallyReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- initiallyReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initiallyReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initials : % -> List(P)
- from TriangularSetCategory(R, E, V, P)
- last : % -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- latex : % -> String
- from SetCategory
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- mainVariable? : (V, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- mainVariables : % -> List(V)
- from PolynomialSetCategory(R, E, V, P)
- map : (Mapping(P, P), %) -> %
- from HomogeneousAggregate(P)
- map! : (Mapping(P, P), %) -> %
- from HomogeneousAggregate(P)
- max : % -> P if P has OrderedSet
- from HomogeneousAggregate(P)
- max : (Mapping(Boolean, P, P), %) -> P
- from HomogeneousAggregate(P)
- medialSet : List(P) -> Union(%, "failed")
medial(ps) returns the same as medialSet(ps, initiallyReduced?, initiallyReduce).
- medialSet : (List(P), Mapping(Boolean, P, P), Mapping(P, P, P)) -> Union(%, "failed")
medialSet(ps, redOp?, redOp) returns bs a basic set (in Wu Wen Tsun sense w.r.t the reduction-test redOp?) of some set generating the same ideal as ps (with rank not higher than any basic set of ps), if no non-zero constant polynomials appear during the computations, else "failed" is returned. In the former case, bs has to be understood as a candidate for being a characteristic set of ps. In the original algorithm, bs is simply a basic set of ps.
- member? : (P, %) -> Boolean
- from HomogeneousAggregate(P)
- members : % -> List(P)
- from HomogeneousAggregate(P)
- min : % -> P if P has OrderedSet
- from HomogeneousAggregate(P)
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- mvar : % -> V
- from PolynomialSetCategory(R, E, V, P)
- normalized? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- normalized? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- parts : % -> List(P)
- from HomogeneousAggregate(P)
- quasiComponent : % -> Record(close : List(P), open : List(P))
- from TriangularSetCategory(R, E, V, P)
- reduce : (P, %, Mapping(P, P, P), Mapping(Boolean, P, P)) -> P
- from TriangularSetCategory(R, E, V, P)
- reduce : (Mapping(P, P, P), %) -> P
- from Collection(P)
- reduce : (Mapping(P, P, P), %, P) -> P
- from Collection(P)
- reduce : (Mapping(P, P, P), %, P, P) -> P
- from Collection(P)
- reduceByQuasiMonic : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- reduced? : (P, %, Mapping(Boolean, P, P)) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- remainder : (P, %) -> Record(rnum : R, polnum : P, den : R)
- from PolynomialSetCategory(R, E, V, P)
- remove : (P, %) -> %
- from Collection(P)
- remove : (Mapping(Boolean, P), %) -> %
- from Collection(P)
- removeDuplicates : % -> %
- from Collection(P)
- removeZero : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- rest : % -> Union(%, "failed")
- from TriangularSetCategory(R, E, V, P)
- retract : List(P) -> %
- from RetractableFrom(List(P))
- retractIfCan : List(P) -> Union(%, "failed")
- from RetractableFrom(List(P))
- rewriteIdealWithHeadRemainder : (List(P), %) -> List(P)
- from PolynomialSetCategory(R, E, V, P)
- rewriteIdealWithRemainder : (List(P), %) -> List(P)
- from PolynomialSetCategory(R, E, V, P)
- rewriteSetWithReduction : (List(P), %, Mapping(P, P, P), Mapping(Boolean, P, P)) -> List(P)
- from TriangularSetCategory(R, E, V, P)
- roughBase? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughEqualIdeals? : (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughSubIdeal? : (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughUnitIdeal? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- sample : () -> %
- from Aggregate
- select : (Mapping(Boolean, P), %) -> %
- from Collection(P)
- select : (%, V) -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- sort : (%, V) -> Record(under : %, floor : %, upper : %)
- from PolynomialSetCategory(R, E, V, P)
- stronglyReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- stronglyReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- stronglyReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- triangular? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- trivialIdeal? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- variables : % -> List(V)
- from PolynomialSetCategory(R, E, V, P)
- zeroSetSplit : List(P) -> List(%)
- from TriangularSetCategory(R, E, V, P)
- zeroSetSplitIntoTriangularSystems : List(P) -> List(Record(close : %, open : List(P)))
- from TriangularSetCategory(R, E, V, P)
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(InputForm)
Collection(P)
Aggregate
RetractableFrom(List(P))
HomogeneousAggregate(P)
BasicType
PolynomialSetCategory(R, E, V, P)
CoercibleTo(List(P))
InnerEvalable(P, P)
Evalable(P)
SetCategory
CoercibleTo(OutputForm)
TriangularSetCategory(R, E, V, P)
finiteAggregate
shallowlyMutable